On-site effluent management study

Lot 3 in the proposed subdivision of 24 Flirtation Hill Lane Gulgong NSW

Ref: 43599-3.1 Date: 15 March 2024

Envirowest Consulting Pty Ltd ABN 18 103 955 246

- 9 Cameron Place, PO Box 8158, Orange NSW 2800 Tel (02) 6361 4954 •
- 6/72 Corporation Avenue, Bathurst NSW Tel (02) 6334 3312 •
- Email admin@envirowest.net.au Web www.envirowest.net.au •

Environmental
Geotechnical
Asbestos
Services

Document control

Client Victoria Caroli 24 Flirtation Hill Lane Gulgong NSW 2852

Rev	Report number	Date	Prepared by	Checked by	Revision details/status
0	43599-3	05/02/2024	Harish Kumar Thangarasu MEng Geotechnical Engineer	Eliza Hurst BSc & BNSc Environmental Scientist	DRAFT
1	43599-3.1	15/03/2024	Harish Kumar Thangarasu MEng Geotechnical Engineer		Amendment to map

Envirowest Consulting Pty Ltd 9 Cameron Place PO Box 8158 Orange NSW 2800 T 02 6361 4954

6/72 Corporation Avenue Bathurst NSW 2795 T 02 6334 3312

E admin@envirowest.net.au W envirowest.net.au

Copyright © 2024 Envirowest Consulting Pty Ltd. This document is copyright apart from specific uses by the client. No part may be reproduced by any process or persons without the written permission of Envirowest Consulting Pty Ltd. All rights reserved. No liability is accepted for unauthorised use of the report.

1. Summary

Dranged development and	A rural regidential let requires evaluation for suitability of an aita
Proposed development and situation	A rural-residential lot requires evaluation for suitability of on-site application of effluent from a new proposed dwelling. This report describes the assessment and recommends a suitable effluent treatment and application system.
Investigation	A site assessment and soil assessment were undertaken using the Australian Standard 1547, <i>On-site domestic wastewater management</i> , and the Environment and Health Protection Guidelines, <i>On-site sewage management for single households</i> (1998), Department of Urban Affairs and Planning, as guidelines. Suitable wastewater application systems, sizing and location for the site are recommended. The evaluation is based on a dwelling with four potential bedrooms.
Tune of land application	The recovered of evictors in
Type of land application and treatment systems	The recommended system is:
considered best suited to the site	Surface or sub-surface irrigation with an irrigation area of 444 square metres. Gypsum should be applied to the application area during construction.
	Secondary wastewater treatment system accredited by NSW Health
Location	The location of the effluent application area is identified in Appendix 1.
Notes	Construction of the treatment and application systems should be according to AS1547 and Sydney Catchment Authority guidelines, <i>Designing and Installing On-site Wastewater Systems</i> (2019).
	Gypsum should be applied to the application area during construction and annually to maintain permeability.
	Secondary treatment systems require regular maintenance to ensure effective operation. Maintenance scheduling should be undertaken in accordance with manufacturers and NSW Health guidelines.
	The water balance is calculated using full water saving devices such as dual flush toilets (6/3 litre water closets), water reduction cycles on dishwashers, aerator faucets fitted to taps, front loader washing machines and water reducing shower heads.
	A maintained grass sward is the recommended vegetation over the irrigation area. Appendix 3 is a checklist of dos and don'ts to ensure correct operation of the wastewater system.

2. Introduction

A rural residential lot requires evaluation for on-site application of effluent from a proposed new residential dwelling. A site and soil assessment were undertaken on 11 December 2023 and soil samples analysed. This report describes the site and soil investigation and recommends a suitable effluent treatment and application system.

3. Scope

A site assessment and soil assessment were undertaken using the Australian Standard 1547, *Onsite domestic wastewater management*, Sydney Catchment Authority guidelines, *Designing and Installing On-site Wastewater Systems* (2012) and the Environment and Health Protection Guidelines, *On-site sewage management for single households* (1998), Department of Urban Affairs and Planning, as guidelines. Suitable wastewater application systems, sizing and location for the site are recommended.

4. Site information

4. Site illioillat	1011				
Address of site	Lot 3 in the proposed subdivision of 24 Flirtation Hill Lane Gulgong NSW				
Local Government	Mid-Western Regional Council				
Client	Victoria Caroli				
Size	2292m ²				
Location, shape, layout	A plan of the relevant areas of the site and proposed effluent application area is described in Appendix 1.				
Photograph(s) attached	Yes				
Intended water supply	Rainwater Reticulated water supply Bore/Groundwater				
Development	New residential dwelling				
Expected wastewater flows	Number of potential bedrooms – 4 Number of persons – 5				
	Flows per person – 120 litres/person				
	Total expected wastewater flow is 600 litres/day				
	Flows are calculated using full water saving devices such as dual flush toilets (6/3 litre water closets), water reduction cycles on dishwashers, aerator faucets fitted to taps, front loader washing machines and water reducing shower heads.				
	Re-calculation of the hydraulic balance and application area is required for dwellings containing a differing number of potential bedrooms.				
Local experience of on-site management systems nearby	All systems are known to work satisfactorily in the locality providing they are adequately designed and maintained.				

Setting	This lot is in a rural residential setting where the average dwelling density is less than 0.5 dwelling per 2 ha and therefore less than the 1 per 0.4 hectares required for groundwater protection (Geary & Gardner 1996, Land Management for Urban Development, Australian Society of Soil Sciences, Qld).
Current land-use	Grazing
Climate	Summers are warm to hot, and winters are cool to cold with little or no effective evaporation. Rainfall is distributed evenly throughout the year with an average annual rainfall of 629mm and pan evaporation of 1755mm (Bureau of Meteorology, Mudgee NSW).

5. Site assessment

Work undertaken	Details
Date	11 December 2023
Details	Site inspection, borehole construction, soil sampling
Weather on day and preceding week	Fine on day, >25mm rain in preceding week

Site feature	Assessment	Limitation
Vegetation	Grasses	Minor
Flood potential: 1 in 20 year 1 in 100 year	Nil Nil	Minor
Exposure Site aspect Shelter belts Topographical feature or structure	High South Nil Nil	Minor
Slope	0-1% in application area	Minor
Landform	Mid-slope	Minor
Run-on and seepage	Run-on and sub-surface seepage is expected to be moderate. Diversion banks may be required to divert the water from upper slope sources.	Moderate
Erosion potential: Erodibility	The topsoil and subsoil have a low erodibility.	Minor
Erosion hazard	Erosion hazard is low and is reduced when vegetated.	
Site drainage	Moderate. Mottled clay identified from 400mm.	Moderate

Fill	Nil	Minor
Groundwater: Level of protection Bores and wells in the area and their purpose	Low No groundwater bores are located within 100m of the recommended application area. One groundwater bore is located within 500m of the recommended application area. Bore is licensed for stock and domestic purposes. Standing water level is from32.0m and water bearing zone is from 40.0m to 41.0m. No impact on groundwater is expected from the application of effluent on the site.	Minor
Surface water: Permanent waters, streams, lakes (Recommended buffer distance 100m) Other waters, intermittent waterways (Recommended buffer distance 40m)	Nil Nil	Minor
Buffer distances from recommended application area to: Boundary premises (Recommended buffer distance 3-6m) Swimming pools (Recommended buffer distance 6m) Buildings (Recommended buffer distance 3-6m)	>3m Nil >6m	Minor
Area required for application system(s): Area available (including buffers):	54m² minimum area required for trench systems 444m² minimum area required for irrigation systems. Potential application area 888m² available (Appendix 1).	Minor
Surface rocks, rock outcrops	Nil	Minor
Geology	This site is located within the Gulgong Soil Landscape. This soil comprises intergrades Red Podzolic Soils on crests and mid to upper slopes, Non-calcic Brown Soils and Red Earths on mid to lower slopes, Greybrown Podzolic Soils and Brown Podzolic-Solodic Soils on lower slopes and flats beside drainage lines. The geological unit is Tinja Formation, Burrunah Formation and undifferentiated. The parent rock are	Minor

	Shale, siltstone, chert, limestone, arkose, andesite, tuff and tuffaceous sandstone. The soil parent material is made up of in situ and alluvial-colluvial material derived from the parent rock (eSPADE v2.2).	
Environmental concerns: Native plants intolerant of phosphorous	Nil	Minor
High water table	Nil	
Water way/wetland	None nearby	
Community water storage		
Site stability:	No, not expected to affect system	Minor
Is expert assessment necessary	performance	

6. Soil assessment

Soil was assessed on site on 11 December 2023 by borehole construction to a depth of 1.5 metres or drill refusal with a truck mounted EVH auger drill.

The soil profile was described, and representative samples collected for the determination of physical and chemical properties. Soil physical property measurements undertaken included: dispersion description, texture, colour, pH, and salinity. The laboratory tests for physical properties were undertaken by Envirowest Testing Services and results are presented in the following table.

Depth (mm)	Description	Sampled (mm)	Texture group	Moisture	Emerson aggregate test*	pH (1:5 water)	ECe dS/m
Test hole 1							
0-300	Brown fine sandy clay loam	100	FSCL	D	3	6.5	0.43
300-700	Red light clay with fine gravel, yellow mottles and Ironstone nodules	600	LC	D	3	6.6	0.15
700-1500	Brownish red-light clay with trace fine gravel with fine gravel, yellow mottles, and Ironstone	1000	LC	D	3	7.1	0.15
1500	nodules End of hole at investigation depth						

M=Moist, D=Dry *1= highly dispersive (slakes, complete dispersion), 2= moderately dispersive (slakes, some dispersion), 3= slightly dispersive (slakes, some dispersion after remoulding), 4=M non-dispersive (slakes, carbonate or gypsum present), 5= non-dispersive (slakes, dispersion in shaken suspension) 6= non-dispersive (slakes, flocculates in shaken suspension), 7= non-dispersive (no slaking, swells in water), 8= non-dispersive (no slaking, does not swell in water).

Site feature	Assessment	Limitation
Depth to bedrock	Greater than 1,500mm in recommended application area (600mm below application base recommended)	Minor
Depth to high seasonal or episodic water table	Approximately 400mm in recommended application area (600mm below application base recommended)	Moderate
Coarse fragments	Gravel identified in subsoil profile	Minor
Bulk density	Good (estimated)	Minor
рН	Satisfactory (4.5-8.5 optimum range)	Minor

Site feature	Assessment	Limitation
Salinity	Non-saline (<4.0 dS/m desirable threshold)	Minor
Phosphorus sorption capacity (SCA, 2012)	6,500 kg/ha estimated	Minor
Water is not expected to move off site, nutrients will be utilised by the vegetation and stored in the soil. The subsoil is a moderately drained light clay that will immobilise moderate quantities of nitrogen (in ammonium and organic forms) as derived from primary treatment systems.		Moderate
Cation exchange capacity	Moderate (estimated). Will provide adequate retention of nutrients for plant growth.	
Dispersiveness (Emerson aggregate test) Slightly dispersive fine sandy clay loam topsoil of slightly dispersive light clay subsoil. Regular application gypsum recommended at the rate of 1kg per square mof application area.		Minor
Soil structure	Strongly structured	Minor
Soil texture and permeability category	Clay Loam CL (100mm) Light clay LC (600mm)	Minor

7. System selection

7.1 Estimation of land application areas from hydraulic loadings

Rainfall water balance and land application area calculations are presented in Appendix 3 and summarised in the following table. Design flow rates for the dwelling are 600L/day based on the use of water saving features. Wet weather storage areas included in the water balance utilise the storage capacity of the soil. The design application rate was determined from Tables L1, M1, N1 in AS1547 using the permeability classification of the subsoil.

Factors Affecting Design Loading and Sizing		Design application rate (AS1547) (mm/day)	Size required for effluent application	
Hydraulic loading for different application systems - Absorption trench - Evapotranspiration - Surface/sub-surface irrigation		8 8 3	54m² 54m² 444m²	
Notes	The proposed loading will provide for leaching of salts out of the root zone and prevent the s from becoming sodic. The proposed infiltration rates will protect the catchment against off-sit nutrient movement.			

7.2 Centralised sewerage systems

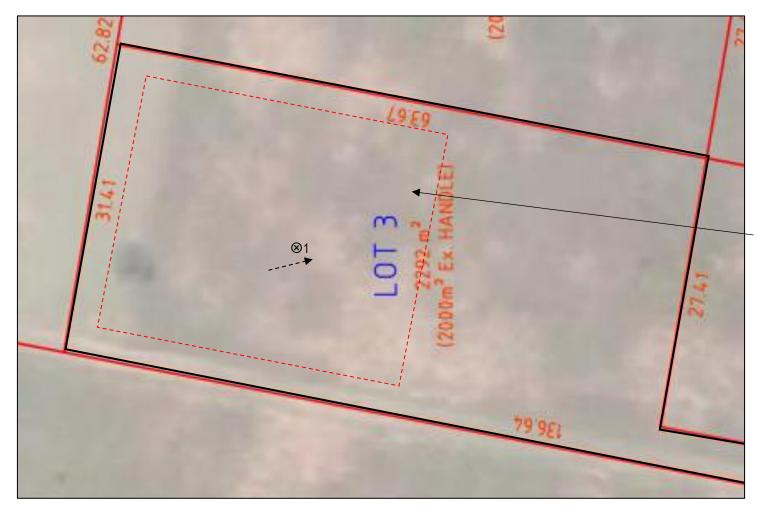
Consideration of connection to a centralised sewerage system		
Approximate distance to nearest feasible connection:	>2km	
Potential for future connection to centralised sewerage:	high / medium / low / already connected	

Potential for future connection to reticulated water:	high / medium / low / already connected

Suitability of application systems 7.3

Application system	Treatment system	Site limitations of the application system	Modifications to mitigate constraints	Suitability
Absorption system	Septic tank	Moderately drained subsoil	Nil	No
Evapotranspiration system	Septic tank	Moderately drained subsoil	Nil	No
Surface irrigation	Secondary	Moderately Dispersive topsoil	Regular application of Gypsum	Yes
Sub-surface irrigation	Secondary	Moderately Dispersive topsoil	Regular application of Gypsum	Yes

7.4 System recommendation						
Type of land application and treatment systems considered best suited to the site	 Surface or sub-surface irrigation with an irrigation area of 444 square metres. Gypsum should be applied to the application area during construction. Secondary wastewater treatment system accredited by NSW Health 					
Location	The location of the effluent application area is identified in Appendix 1.					
Notes	Construction of the treatment and application systems should be according to AS1547 and Sydney Catchment Authority guidelines, <i>Designing and Installing On-site Wastewater Systems</i> (2019). Gypsum should be applied to the application area during construction and annually to maintain permeability. Secondary treatment systems require regular maintenance to ensure effective operation. Maintenance scheduling should be undertaken in accordance with manufacturers and NSW Health guidelines. The water balance is calculated using full water saving devices such as dual flush toilets (6/3 litre water closets), water reduction cycles on dishwashers, aerator faucets fitted to taps, front loader washing machines and water reducing shower heads. A maintained grass sward is the recommended vegetation over the irrigation area. Appendix 3 is a checklist of dos and don'ts to ensure correct operation of the wastewater system.					


8. General comments

Are there any specific environmental constraints?	Wastewater should be evenly applied over the application area.
Are there any specific health constraints?	Restrict access to people and stock as recommended in AS1547 and summarised in Appendix 4.
Any other comments?	The topsoil is capable of supporting plant growth that will optimise evapotranspiration and wastewater usage.

9. Report limitations and intellectual property

This report has been prepared for the use of the client to achieve the objectives given the clients requirements. The Australian Standard 1547, *On-site domestic wastewater management*, and the Environment and Health Protection Guidelines, *On-site sewage management for single households* (1998) Department of Urban Affairs and Planning, have been used as guidelines in this report. Where system limitations or uncertainties are known, they are identified in the report. No liability can be accepted for failure to identify conditions or issues which arise in the future and which could not reasonably have been predicted using the scope of the investigation and the information obtained. No guarantee can be made that the wastewater system will achieve all performance criteria because of operational factors and the inherent variable and unpredictable nature of the soil. All components of the wastewater system have a limited life.

This report including data contained, its findings and conclusions remain the intellectual property of Envirowest Consulting Pty Ltd. A licence to use the report for the specific purpose identified is granted after full payment for the services involved in preparation of the report. This report should not be used by persons or for purposes other than those stated, and not reproduced without the permission of Envirowest Consulting Pty Ltd.

Disposal system to be located in recommended application area. (Required application area of 444m² plus reserve area of 444m² available)

<u>Legend</u>


Lot boundary

⊗ Borehole location

Approximate building envelope

--**→** slope

Recommended application areas (Required application area of 444m² plus reserve area of 444m² available)

Appendix 1. Site plan and borehole location							
Lot 3 in the proposed subdivision of 24 Flirtation Hill Lane, Gulgong NSW							
Envirowest Consulting Pty Ltd							
Job: 43599-3.1	Drawn by: HT	Date: 15/03/2024					

Appendix 2. Photograph of the recommended application area

Looking north over the recommended application area.

Appendix 3. Monthly water balance determines the wastewater application area required (Irrigation systems) Design wastewater flow L/day 600 L/person/day Q 5 persons 3 21 mm/day Design percolation rate mm/wk Land area L 98 m2 Effective precipitation ΕP 0.9 (10% runoff)

Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	total
D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Р		mm/month	70	72	46	32	36	41	42	36	49	56	78	72	629
E		mm/month	272.8	221.2	195.3	126	77.5	48	52.7	74.4	102	158.1	207	220	1755
С		-	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	10.8
EP		mm/month	62.73	64.62	41.4	28.98	32.13	37.17	37.62	32.22	43.83	50.4	70.2	64.8	566
W	QXD/L	mm/month	189.8	171.4	189.8	183.7	189.8	183.7	189.8	189.8	183.7	189.8	183.7	189.8	2235
	P+W	mm/month	252.5	236.0	231.2	212.7	221.9	220.8	227.4	222.0	227.5	240.2	253.9	254.6	2801
ET	ExC	mm/month	245.52	199.1	175.8	113.4	69.8	43.2	47.4	67.0	91.8	142.3	186.3	198.0	1580
В	R/7xD	mm/month	93.0	84.0	93.0	90.0	93.0	90.0	93.0	93.0	90.0	93.0	90.0	93.0	1095
	ET+B	mm/month	338.5	283.1	268.8	203.4	162.8	133.2	140.4	160.0	181.8	235.3	276.3	291.0	2675
S	(EP+W)-(ET+B)	mm/month	-86.0	-47.0	-37.6	9.3	59.2	87.6	87.0	62.1	45.7	4.9	-22.4	-36.4	
M		mm	0.0	0.0	0.0	9.3	68.4	156.1	243.1	305.1	350.8	355.7	333.3	296.9	
	D P E C EP W	D P E C C EP W QXD/L P+W ET ExC B R/7xD ET+B	D days P mm/month E mm/month C - EP mm/month W QXD/L mm/month P+W mm/month ET ExC mm/month B R/7xD mm/month ET+B mm/month S (EP+W)-(ET+B) mm/month	D days 31 P mm/month 70 E mm/month 272.8 C - 0.9 EP mm/month 62.73 W QXD/L mm/month 189.8 P+W mm/month 252.5 ET ExC mm/month 245.52 B R/7xD mm/month 93.0 ET+B mm/month 338.5 S (EP+W)-(ET+B) mm/month -86.0	D days 31 28 P mm/month 70 72 E mm/month 272.8 221.2 C - 0.9 0.9 EP mm/month 62.73 64.62 W QXD/L mm/month 189.8 171.4 P+W mm/month 252.5 236.0 ET ExC mm/month 245.52 199.1 B R/7xD mm/month 93.0 84.0 ET+B mm/month 338.5 283.1 S (EP+W)-(ET+B) mm/month -86.0 -47.0	D days 31 28 31 P mm/month 70 72 46 E mm/month 272.8 221.2 195.3 C - 0.9 0.9 0.9 0.9 EP mm/month 62.73 64.62 41.4 W QXD/L mm/month 189.8 171.4 189.8 P+W mm/month 252.5 236.0 231.2 ET ExC mm/month 245.52 199.1 175.8 B R/7xD mm/month 93.0 84.0 93.0 ET+B mm/month 338.5 283.1 268.8 S (EP+W)-(ET+B) mm/month -86.0 -47.0 -37.6	D days 31 28 31 30 P mm/month 70 72 46 32 E mm/month 272.8 221.2 195.3 126 C - 0.9 0.9 0.9 0.9 0.9 EP mm/month 62.73 64.62 41.4 28.98 W QXD/L mm/month 189.8 171.4 189.8 183.7 P+W mm/month 252.5 236.0 231.2 212.7 ET ExC mm/month 245.52 199.1 175.8 113.4 B R/7xD mm/month 93.0 84.0 93.0 90.0 ET+B mm/month 338.5 283.1 268.8 203.4 S (EP+W)-(ET+B) mm/month -86.0 -47.0 -37.6 9.3	D days 31 28 31 30 31 P mm/month 70 72 46 32 36 E mm/month 272.8 221.2 195.3 126 77.5 C - 0.9 0.9 0.9 0.9 0.9 0.9 EP mm/month 62.73 64.62 41.4 28.98 32.13 W QXD/L mm/month 189.8 171.4 189.8 183.7 189.8 P+W mm/month 252.5 236.0 231.2 212.7 221.9 ET ExC mm/month 245.52 199.1 175.8 113.4 69.8 B R/7xD mm/month 93.0 84.0 93.0 90.0 93.0 ET+B mm/month 338.5 283.1 268.8 203.4 162.8 S (EP+W)-(ET+B) mm/month -86.0 -47.0 -37.6 9.3 59.2	D days 31 28 31 30 31 30 P mm/month 70 72 46 32 36 41 E mm/month 272.8 221.2 195.3 126 77.5 48 C - 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	D days 31 28 31 30 31 30 31 P mm/month 70 72 46 32 36 41 42 E mm/month 272.8 221.2 195.3 126 77.5 48 52.7 C - 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 EP mm/month 62.73 64.62 41.4 28.98 32.13 37.17 37.62 W QXD/L mm/month 189.8 171.4 189.8 183.7 189.8 183.7 189.8 P+W mm/month 252.5 236.0 231.2 212.7 221.9 220.8 227.4 ET ExC mm/month 245.52 199.1 175.8 113.4 69.8 43.2 47.4 B R/7xD mm/month 93.0 84.0 93.0 90.0 93.0 90.0 93.0 ET+B mm/month 338.5 283.1 268.8 203.4 162.8 133.2 140.4 S (EP+W)-(ET+B) mm/month -86.0 -47.0 -37.6 9.3 59.2 87.6 87.0	D days 31 28 31 30 31 30 31 31	D days 31 28 31 30 31 30 31 30 31 30 31 30 P mm/month 70 72 46 32 36 41 42 36 49 E mm/month 272.8 221.2 195.3 126 77.5 48 52.7 74.4 102 C - 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	D days 31 28 31 30 31 30 31 30 31 30 31 P mm/month 70 72 46 32 36 41 42 36 49 56 E mm/month 272.8 221.2 195.3 126 77.5 48 52.7 74.4 102 158.1 C - 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	D days 31 28 31 30 31 30 31 30 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	D days 31 28 31 30

Storage	V	Soil storage	mm mm	355.7 372.0
		Storage required VxL/1000	mm m³	-16.3 -1.6

Irrigation area	m^2	98

wate capa	r holding acity	depth (mm)	Totals(mm)
Topsoil	34%	300	68
Subsoil	38%	700	304
			372

Appendix 3b. Estimation area requirement from organic matter and nutrient balances

(irrigation systems)

Estimated effluent flow (Q) 600 L/day
Soil depth 1.5 m

Organic matter balance

BOD (C) 20 mg/L treated wastewater flow rate (Q) 600 L/day critical loading rate of BOD (Lx) 3000 mg/m²/day land area required (A) 4.0 m²

Nitrogen balance

nutrient concentration 37 mg/L treated wastewater flow rate 600 L/day critical loading rate of nutrient 50 mg/m²/day land area required (A) 444 m²

Determination of nitrogen criitical loading rate

Nitrogen load (kg/year) 8.1 kg/year Loss 20% denitrification 6.5 kg/year

Load to soil assumed irr.

Load to soil 146.0 kg/ha/year area 444 m2

Vegetation usage from table

Residual (potential leaching) -54.0 kg/ha/year

Typical nitrogen uptake (Myers et al. 1984)

 Pastures
 300 kg/ha/year
 82 mg/m2/day

 Pine
 350 kg/ha/year
 96 mg/m2/day

 Eucalypts
 180 kg/ha/year
 49 mg/m2/day

Phosphorus balance

Phosphorus sorption capacity per

metre= 8,000 kg/ha
Phosphorus sorption capacity of

profile= 12,000 kg/ha

Soil factor 0.33

Critical loading= 3 mg/m²/

Critical loading= mg/m²/day
P concentation*= 12 mg/L

P adsorbed= phosphorus sorption capacity x soil factor

3960

0.396 kg/m²

critical loading x

Puptake= days/year x 50 years

54750

0.0548 kg/m²

Pgenerated= total phosphorus concentration x wastewater volume in

131400000

131 kg Pgenerated / (Padsorbed + Puptake)

Land area required 291.5 m²

years

50

Appendix 4. Checklist for effective management of wastewater systems

Domestic wastewater system

DO

- Check household products for suitability of use with a septic tank.
- Conserve water, prolonged period of high-water use can lead to application area failure. For optimum operation, avoid daily and weekly surges in water flows. Spas are not recommended.
- Scrape cooking dishes and plates prior to washing to reduce solid load.
- Maintain the system with regular servicing as per the manufacturer's instructions.

DON'T

• Dispose of excessive solid material, fats, lint or large water volumes into drains.

Land application area

- Construct and maintain diversion drains around the top-side of the application area to divert surface water.
- The application area should be a grassed area, which is maintained at 10-30cm height.
- The area around the perimeter can be planted with small shrubs to aid transpiration of the wastewater.
- Ensure run-off from the roof or driveway is directed away from the application area.
- Periodic application of gypsum may be necessary to maintain the absorptive capacity of the soil.
- **Don't** erect any structures or paths on the land application area.
- **Don't** graze animals on the land application area.
- **Don't** drive over the land application area.
- Don't plant large trees that shade the land application area thereby reducing transpiration of water.
- Don't let children or pets play on the land application area.
- Don't extract untreated groundwater for potable use.