

Prepared for: CAM Engineering and Constructions Pty Ltd EP3229.001 23 February 2024

Preliminary Geotechnical Investigation

313 Magpie Lane, Galambine NSW 2850

CAM Engineering and Constructions Pty Ltd 383 Freemans Drive, Cooranbong NSW 2265

23 February 2024

Our Ref: EP3229.001

LIMITATIONS

This Preliminary Geotechnical Investigation was conducted on the behalf of CAM Engineering and Constructions Pty Ltd for the purpose/s stated in **Section 1**.

EP Risk has prepared this document in good faith, but is unable to provide certification outside of areas over which EP Risk had some control or were reasonably able to check. The report also relies upon information provided by third parties. EP Risk has undertaken all practical steps to confirm the reliability of the information provided by third parties and do not accept any liability for false or misleading information provided by these parties.

It is not possible in a Preliminary Geotechnical Investigation to present all data, which could be of interest to all readers of this report. Readers are referred to any referenced investigation reports for further data.

Users of this document should satisfy themselves concerning its application to, and where necessary seek expert advice in respect to, their situation.

All work conducted and reports produced by EP Risk are based on a specific scope and have been prepared for CAM Engineering and Constructions Pty Ltd and therefore cannot be relied upon by any other third parties unless agreed in writing by EP Risk.

The report(s) and/or information produced by EP Risk should not be reproduced and/or presented/reviewed except in full.

QUALITY CONTROL

Version	Author	Date	Reviewer	Date	Quality Review	Date
v01	O. Pruteanu	20.08.2023	J. Young	20.08.2023	O. Pruteanu	22.08.2023
v02	O. Pruteanu	20.08.2023	J. Young	23.08.2024	J. Young	23.08.2023

DOCUMENT CONTROL

Version	Date	Reference	Submitted to
v01	22.08.2023	Preliminary Geotechnical Investigation	CAM Engineering and Constructions Pty Ltd
v02	23.02.2024	Layout Plans Update	ADW Johnson Pty Ltd

Table of Contents

1	Intro	duction	1
	1.1	Objective	1
	1.2	Scope of Works	1
2	Site D	Description and Location	2
3	Deskt	op Study	3
	3.1	Published Data	3
	3.1.1	Regional Geology	3
	3.2	Soil Landscape	3
	3.3	Mine Subsidence	4
4	Geote	echnical Investigation	5
	4.1	Investigation Methodology	5
		Subsurface Profile	
	4.3	Groundwater	8
	4.4	Laboratory Test Results	8
	4.4.1	California Bearing Ratio (%)	8
	4.4.2	Particle Size Distribution	9
	4.4.3	Shrink-Swell	9
	4.4.4	Atterberg Limits	9
	4.4.5	Point Load Testing	. 10
	4.4.6	Aggressivity	. 11
5	Prelir	ninary Pavement Design	. 12
	5.1	Design Traffic	. 12
	5.2	In-situ Testing	. 12
	5.3	Preliminary Pavement Thickness Design	. 14
	5.3.1	Preliminary Pavement Thickness Design – Roundabout	. 15
	5.4	Subgrade Preparation	. 16
	5.5	Materials	. 16
	5.5.1	Wearing Course	. 17
	5.6	Pavement Interface and Tie-in	. 17
	5.7	Drainage	. 18
	5.8	Inspections and Testing	. 18
	5.9	Additional Investigation	. 18
6	Prelir	ninary Site Classification	. 19
7	Const	ruction Notes	. 21
	7.1	Excavatability Assessment	. 21
		Filling	. 22
	7.3	Water Storage Tanks	. 23
8		Construction	
	8.1	Laboratory Testing Results	
	8.1.1	,	
	8.2	Basin Batters Guidelines	
	8.2.1		
9	Refer	ences	. 27

Table 1. Summary of Geotechnical Testing Schedule	5
Table 2. Test Pits Identification	6
Table 3. Observed Geotechnical Units	6
Table 4. Distribution of Subsurface Geological Unit Across the Investigated Locations	7
Table 5. California Bearing Ratio Test Results	
Table 8. Particle Size Distribution Test Results	
Table 6. Shrink-Swell Index Test Results	9
Table 7. Atterberg Limits Test Results	9
Table 9. Point Load Test Results	10
Table 10. Aggressivity Test Results	11
Table 11. Recommended Road Type and Design ESA's	12
Table 12. In-situ (field) CBR Values Versus Soaked CBR	
Table 13. Recommended Flexible Pavement Compositions	14
Table 14. Recommended Flexible Pavement Compositions	14
Table 15. Preliminary Pavement Thickness Design Roundabout	15
Table 16. Recommended rigid pavement roundabout (SFRC)	16
Table 17. New Unbound Pavement Construction: Material Specification and Compaction Requirements	17
Table 18. General Definition of Site Classes	
Table 19. Anticipated Site Classification	
Table 20. Falling Head Permeability Test Results	24
Table 21. Drainage Basin materials and compaction requirements	24

Figure 1. Site Location	2
Figure 2. Geological Map Excerpt (Q_avt – yellow; Pmlw – green; Schb – purple)	3
Figure 3. Atterberg Limits Plot	10
Figure 4. CBR (%) from DCP Tests Versus Depth	13
Figure 5. Excavatability Assessment after Pettifer and Fookes	21

List of Appendices

Appendix A	Proposed	Development	Layout Plans
------------	----------	-------------	--------------

Appendix B Photolog

Appendix C Geotechnical Investigation Lcoations

Appendix D Test Pit Logs

List of Attached Figures

Appendix E Laboratory Test Results

List of Tables in Body of Report

Appendix F Pavement Thickness Calculations

Appendix G Foundation Maintenance and Footing Performance

1 Introduction

EP Risk Management Pty Ltd (EP Risk) was engaged by CAM Engineering & Constructions Pty Ltd to undertake a preliminary geotechnical investigation at 313 Magpie Lane, Galambine NSW 2850. The site is located within lot 1 DP174385 and is approximately 72.41ha in area. It is understood that the Preliminary Geotechnical Investigation is required to submit the Development Application for the proposed development. Currently the site is proposed to be developed in two zones: - short term accommodation in the north-western part of the site and long-term accommodation on the rest of the site.

A revised plans of the proposed development provided following the investigation is included as **Appendix A** – **Proposed Development Layout**.

1.1 Objective

The objective of the investigation is to assess the substrata and identify the potential geotechnical constraints/conditions for future development and inform the geotechnical design for the on ground and underground infrastructure within the proposed development.

1.2 Scope of Works

EP Risk carried out the following scope of works for the preliminary geotechnical investigation:

- Desktop study collection and review of available information related to the Site.
- Advanced thirty-five (35) test bores/pits within the proposed development to assess the subsurface conditions.
- Dynamic Cone Penetrometer (DCP) testing to assess the consistency of the strata.
- Collection of representative disturbed, undisturbed, and bulk soil samples for laboratory testing.

This Geotechnical Report has been prepared in accordance with our proposal (EP16772 dated 12 May 2023) and includes the findings of the investigation scope along with:

- Interpretation of the investigation results.
- Laboratory testing results.
- Identification of the relevant geological units on site.
- Preliminary pavement design.
- Pavement thickness for Magpie Lane and Guntawang Road.
- Preliminary site classification.
- Indication of rock strength in terms of ability to excavate.
- Detention basin guidelines.

2 Site Description and Location

The site is of triangular shape and fronts the Magpie Lane to the north, Guntawang Road to the west and farmland and vineyard to the east. At the time of the investigation the site was largely vacant apart from a shed and shipping container located on the eastern boundary, a partial constructed internal road and concrete annulus for a previous proposed roundabout. The land appears to be used for primary production purposes - grazing.

The site topography slopes gently from east towards west with elevations of approximately 450m Australian Height Datum (AHD) along the eastern boundary and approximately 420-430 m AHD along the western boundary on Guntawang Road. The site vegetation consists of short grass with scattered mature trees across the site. Several small dams associated with the primary production activities have been noted on site.

Recontouring of the hill slopes to reduce the scoring have been observed in the northern section of the site. Two ephemeral water courses run across the site following the contour lines from east to west. Photographs collected during site investigation are collated and included in **Appendix B – Photolog**.

An excerpt from Six Maps showing the site location is presented in Figure 1.

Figure 1. Site Location

3 Desktop Study

3.1 Published Data

3.1.1 Regional Geology

Based on geological data sourced from NSW Government website (www.minview.geoscience.nsw.gov.au), the Site is underlain by:

- Quaternary aged sediments (Qavt) comprising of fluvially deposited clay, silt, sand, and gravel.
- Permian aged sedimentary rock of Watermark Formation (Pmlw) comprising of siltstone, claystone, silty sandstone, thinly bedded siltstone, and sandstone.
- Ludlow aged sedimentary rock of Biraganbil Formation (Schb) comprising of quartz lithic, feldspar-lithic and quartz sandstone, siltstone, shale, and slate.

A faulted boundary crosses the site in an approximately north-south direction. An excerpt of the geological map is shown in Figure 2.

Figure 2. Geological Map Excerpt (Q_avt – yellow; Pmlw – green; Schb – purple)

3.2 Soil Landscape

With reference to the NSW Department of Industry, Resources and Energy (www.environment.nsw.gov.au), onsite soil landscapes have been identified to comprise of Mullion Creek (SI5504mu). The landscape is described as low undulating hills from 560 to 980m above sea level with slopes generally between 3-6% and sometimes up to 12%. Drainage channels are generally spaced from 200-500m, with some up to 150m apart. Some limitations of SI5504mu include low fertility, seasonal waterlogging, sodic subsoils on lower slopes, high erosion hazard, acidic surface soils, low permeability.

3.3 Mine Subsidence

With reference to the Mine Subsidence District Data Source the site is not located within a Mine Subsidence District. The closest Mine Subsidence District is located approximately 30km north-east of the site - Mudgee Mine Subsidence District.

4 Geotechnical Investigation

4.1 Investigation Methodology

The site subsurface investigation and adjacent roads (Magpie Lane and Guntawang Road) was undertaken between 10 to 12 July 2023 and included the following:

- Advanced six (6) test pits within the proposed short-term accommodation development in the northern section of the site for preliminary site classification and pavement design.
- Advanced twenty-four (24) test pits within the long-term accommodation development layout for preliminary site classification and pavement design.
- Advanced three (3) test bores on Guntawang Road and two (2) test bores on Magpie Lane to inform the pavement design.
- Dynamic Cone Penetration (DCP) was undertaken at each test pit location prior to excavation and in the subgrade at the location of test bores on Magpie Lane and Guntawang Road.

The field investigation was carried out by an experienced EP Risk Geotechnical Engineer who logged the subsurface profile in each test pit and obtained bulk, disturbed, and undisturbed soil samples for subsequent laboratory testing and soil/rock identification purposes. The test pits were excavated by a 13.5T Komatsu excavator fitted with a 450mm multipurpose bucket. The test bores for pavement were advanced using a 3.5T Bobcat excavator fitted with a 300mm auger.

All test locations were established based on the current development layout as per the plans provided by the client at the time of investigation. The locations of the investigations were identified on site using a handheld GPS unit. The locations of the geotechnical investigation tests are shown in **Appendix C – Geotechnical Investigation Locations**.

The subsurface conditions are summarised in Section 4.2 and detailed test pit/bore logs are included in **Appendix D – Test Pit/Bore Logs** together with the explanatory notes.

A summary of the geotechnical testing schedule is presented in Table 1.

Table 1. Summary of Geotechnical Testing Schedule

Media	Soil/Rock Tests				
Soil	 (7B) California Bearing Ratio (CBR) (3U) Shrink-Swell Index (4D) Atterberg Limits (4D) Particle Size Distribution (PSD) (1B) Fall Head Permeability (4D) Aggressivity 				
Rock	• (10) Point loads (rock samples)				
B – bulk samples; D – disturbed samples, U – undisturbed samples					

4.2 Subsurface Profile

The identification of the test pits reflects their location within the site and its details are shown in Table 2.

Table 2. Test Pits Identification

ID	Identification Name
TPGRNB	Test Pit Guntawang Road North Bound
TPGRSB	Test Pit Guntawang Road South Bound
TPGRSB Shoulder	Test Pit Guntawang Road South Bound Shoulder
TPMLEB	Test Pit Magpie Lane East Bound
TPMLWB	Test Pit Magpie Lane West Bound
TPNW	Test Pit North-West – short term accommodation

A project geological classification has been developed based on the results of the investigation and a summary of the units and their distribution is presented in Table 3 and

Table 4.

The test pit logs, and accompanying explanatory notes are presented in **Appendix D – Test Pit Logs.**

Table 3. Observed Geotechnical Units

Unit #	Origin	Material	Description
Unit 1a	Topsoil	Sandy/Silty CLAY	Low to medium plasticity, brown, black, fine to medium grained sand
Unit 1b	Topsoil	Clayey SAND	Fine to medium grained, brown
Unit 2	Fill	Pavement	Road Seal Sandy GRAVEL, fine to coarse grained, sub-angular to angular, brown, fine to coarse grained sand Clayey SAND, fine to coarse grained, brown
Unit 3a	Residual Soil	Silty/Sandy CLAY	Low to high plasticity, pale brown, yellow, fine to medium grained sand
Unit 3b	Residual Soil	Clayey SAND/SAND	Fine to medium grained, grey

Unit #	Origin	Material	Description
Unit 4a	Extremely Weathered Material (XW)	SILTSTONE/SHALE	Clayey SILT, low to high plasticity, grey and brown, fine to coarse grained sand Silty/Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse grained sand
Unit 4b	Extremely Weathered Material (XW)	SANDSTONE	Clayey SAND, fine to coarse grained, grey, pale brown, red, with pebbles and cobbles Sandy CLAY, medium to high plasticity, fie to coarse grained sand, yellow, red, grey, and brown

Table 4. Distribution of Subsurface Geological Unit Across the Investigated Locations

Table 4. Distribution	or Subsurface (seological Uni		Gound Level (
TP ID	Topsoil		Fill (Pavement)	Residual Soil		Extremely Weathered Material (XW)	
	Unit 1a	Unit 1b	Unit 2	Unit 3a	Unit 3b	Unit 4a	Unit 4b
TP01-L	0.0-0.12	NE	NE	0.12-1.4	NE	NE	1.4-2.1*
TP02-L	NE	0.0-0.15	NE	0.15-0.6	NE	NE	0.6-1.7*
TP03-L	0.0-0.12	NE	NE	0.12-0.3	NE	0.3-0.9*	NE
TP04-L	0.0-0.22	NE	NE	0.22-0.8	NE	NE	0.8-1.8*
TP05-L	0.0-0.15	NE	NE	0.15-0.4	NE	0.4-0.73	NE
TP06-L	NE	0.0-0.4	NE	NE	NE	NE	0.4-1.4*
TP07-L	0.0-0.18	NE	NE	0.18-1.8	NE	1.8-2.9*	NE
TP08-L	NE	0.0-0.17	NE	0.17-0.6	NE	NE	0.6-1.3*
TP09-L	NE	0.0-0.13	NE	0.13-0.5	NE	NE	0.5-1.3*
TP01-P	0.0-0.19	NE	NE	0.19-1.3	NE	NE	1.3-1.9*
TP02-P	0.0-0.2	NE	NE	0.2-0.6	NE	NE	0.6-1.0*
TP03-P	0.0-0.13	NE	NE	0.13-0.46	NE	NE	0.46-0.9*
TP04-P	0.0-0.12	NE	NE	0.12-0.3	NE	0.3-0.92*	NE
TP05-P	0.0-0.09	NE	NE	0.09-0.4	NE	NE	0.4-1.0*
TP06-P	0.0-0.13	NE	NE	0.13-0.4	NE	0.4-1.0*	NE
TP07-P	NE	0.0-0.1	NE	0.1-2.0*	NE	NE	NE
TP08-P	0.0-0.24	NE	NE	0.24-2.7*	NE	NE	NE
TP09-P	NE	0.0-0.17	NE	0.17-1.4	NE	1.4-2.0*	NE
TP10-P	0.0-0.16	NE	NE	0.16-0.4	NE	NE	0.4-0.9*
TP11-P	0.0-0.13	NE	NE	0.13-2.1*	NE	NE	NE
TP12-P	0.0-0.12	NE	NE	0.12-0.6	NE	0.6-2.1*	NE
TP13-P	0.0-0.13	NE	NE	0.13-0.7	NE	NE	0.7-1.3*
TPNW01-L	0.0-0.18	NE	NE	0.18-0.7	NE	NE	0.7-1.1*
TPNW02-L	NE	0.0-0.17	NE	0.17-0.6	NE	NE	0.6-1.15*

	Depth Below Gound Level (mBGL)								
TP ID	Topsoil		Fill (Pavement)	Residual Soil		Extremely Weathered Material (XW)			
	Unit 1a	Unit 1b	Unit 2	Unit 3a	Unit 3b	Unit 4a	Unit 4b		
TPNW03-L	NE	0.0-0.17	NE	0.17-0.5	NE	NE	0.5-0.9*		
TPNW01-P	NE	0.0-0.12	NE	0.12-0.5	NE	0.5-1.1	1.1-1.6*		
TPNW02-P	0.0-0.1	NE	NE	0.25-0.7	0.1-0.25	NE	0.7-1.9*		
TPNW03-P	NE	0.0-0.7	NE	0.38-0.6	0.07-0.38	NE	0.6-2.1*		
TP01-WS	NE	0.0-0.08	NE	0.08-1.6	NE	1.6-3.5*	NE		
TP02-WS	NE	0.0-0.14	NE	0.14-0.6	NE	0.6-2.0*	NE		
TPGRNB	NE	NE	0.0-0.5	NE	NE	NE	0.5-1.5*		
TPGRSB	NE	NE	0.0-0.5	NE	NE	NE	0.5-1.5*		
TPGRSB Shoulder	NE	NE	0.0-0.5	NE	NE	NE	0.5-1.5*		
TPMLEB	NE	NE	0.0-1.2	1.2-1.5*	NE	NE	NE		
TPMLWB	NE	NE	0.0-0.7	0.7-1.5*	NE	NE	NE		
NE- not encountered *-limit of the investigation									

The fill/pavement layers encountered on Guntawang Road appears consistent over the three locations. The pavement thickness is about 500mm of sandy gravel with double seal on top. The subgrade on the testing area appeared to be competent sandstone.

The pavement on Magpie Lane varied between test locations. Bituminous flush seal and sandy gravel up to 0.5m BGL was encountered in one location (TPMLEB) with clayey sand subgrade (crushed sandstone). Sandy CLAY was encountered below the subgrade at 1.2m BGL. The second test pit identified pavement comprising of seal and sandy gravel to 0.3m BGL underlain by Sandy CLAY (crushed sandstone and siltstone). Sandy CLAY was encountered below the subgrade from 0.7m BGL to 1.5m BGL. The Mid-Western Regional Council classifies Magpie Lane as collector road.

4.3 Groundwater

No groundwater was observed in the test pits at the time of the investigation. It should be noted that the groundwater conditions will vary with seasonal and weather conditions along with construction related site conditions.

4.4 Laboratory Test Results

Geotechnical laboratory testing was carried out on selected bulk, disturbed and undisturbed samples collected during the site investigation. All testing was performed by Coffey Testing (Newcastle) and Eurofins - NATA accredited laboratories in accordance with the relevant Australian Standards and technical procedures. The detailed results of laboratory testing are presented in **Appendix E – Laboratory Test Results** and are summarised in the following sections.

4.4.1 California Bearing Ratio (%)

Four-day soaked California Bearing Ration (CBR) tests were undertaken on seven (7) soil samples to inform the design subgrade CBR for the proposed pavement areas. The results of the testing are summarised in Table 5.

Table 5. California Bearing Ratio Test Results

Test ID	Depth (m	Sample Description	W¹ (%)	SOMC ²	SMDD ³	Swell	CBR
	BGL)			(%)	(t/m³)	(%)	(%)

TP05-P	0.4-1.0	XW - Clayey SAND	7.4	12.0	1.93	0.5	114
TP07-P	0.5-1.0	Sandy CLAY	17.9	21.0	1.68	0.0	4.5 ⁴
TP09-P	0.5-1.0	Silty CLAY	14.8	15.0	1.84	0.0	4.5 ⁵
TP10-P	0.5-0.9	XW - Clayey SAND	11.0	19.0	1.72	0.5	5 ⁴
TP12-P	0.6-1.0	XW - Sandy CLAY	10.7	15.0	1.85	1.0	4.5 ⁴
TP13-P	0.2-0.7	Sandy CLAY	7.7	11.0	1.98	0.0	8 ⁵
TPNW03-P	0.6-1.0	XW - Sandy CLAY	12.5	12.5	1.92	0.5	8 ⁵

¹ Field Moisture Content

4.4.2 Particle Size Distribution

Particle Size Distribution (PSD) test results undertaken on samples of subgrade containing Residual Soils and extremely weathered (XW) material are presented in **Error! Reference source not found.** and confirms the material description on the test pit logs.

Table 6. Particle Size Distribution Test Results

Test Pit ID	Depth (m BGL)	% passing % passing 75 2.36 mm sieve µm sieve		Sample Description
TP01-L	0.7-1.4	-1.4 88 68		Silty CLAY with sand trace of gravel
TP04-L	0.3-0.5	96	62	Sandy CLAY
TPNW01-L	/01-L 0.2-0.7 96		68	Silty CLAY with sand
TPNW02-L	0.2-0.6	91	69	Silty CLAY with sand

4.4.3 Shrink-Swell

Shrink-Swell testing was undertaken on three (3) soil samples and the results are summarised in Table 7.

Table 7. Shrink-Swell Index Test Results

			Shrink	age		Swell		
Test Pit ID	Soil Type	Depth (m BGL)	Shrinkage moisture content (%)	Shrink on drying (%)	Moisture content before (%)	Moisture content after (%)	Swell on saturation (%)	Shrink – Swell Index (Iss%)
TP04-L	Sandy CLAY	0.3-0.8	14.9	2.0	14.5	20.1	-1.1	1.1
TP07-L	Silty CLAY	0.5-1.0	19.9	4.1	19.3	22.6	-1.7	2.3
TPNW01-L	Silty CLAY	0.2-0.7	24.2	4.8	23.6	27.0	-0.2	2.7

² Standard Optimum Moisture Content

³ Standard Maximum Dry Density

⁴ CBR at 2.5mm (%) - remoulded to a target of 100% relative density at SOMC, 4.5kg surcharge, four-day soak

⁵ CBR at 5mm (%) - remoulded to a target of 100% relative density at SOMC, 4.5kg surcharge, four-day soak

4.4.4 Atterberg Limits

A summary of Atterberg Limits and Linear Shrinkage test results are presented in Table 8 and are plotted graphically in Figure 3. Testing indicates that clayey materials range from low to high plasticity.

Table 8. Atterberg Limits Test Results

Took Dik ID	Cail	Classification	Depth	Att	erberg Lin	nits	Linear	
Test Pit ID	Soil	Classification	(m BGL)	LL (%)	PL (%)	PI (%)	Shrinkage (%)	
TP01-L	Silty CLAY	CI-CH	0.7-1.4	59	22	37	18.0	
TP04-L	Sandy CLAY	CI-CH	0.3-0.5	32	14	18	10.0	
TPNW01-L	Silty CLAY	CI-CH	0.2-0.7	50	19	31	18.0	
TPNW02-L	Silty CLAY	CL-CI	0.2-0.6	55	24	31	18.0	

LL – Liquid Limit

PI - Plasticity Index

Figure 3. Atterberg Limits Plot

4.4.5 Point Load Testing

It is noted the rock samples collected from test pits are competent bedrock fragments as the lower strength bedrock was broken down into soil during excavation. All the rock samples were collected dry and were tested dry which could potentially contribute to a higher strength rock interpretation. Point load testing has been conducted on selected rock samples collected from test pits and the test results are shown in Table 9.

Table 9. Point Load Test Results

TP ID	Rock	Depth (m BGL)	Moisture condition	Peak Load (kN)	Is (50) MPa	Rock strength
TP02-P	Sandstone	0.6-1.0	Dry	3.74	3.2	Very High Strength
TP02-P	Sandstone	0.6-1.0	Dry	3.22	2.4	High Strength

PL – Plastic Limit

TP ID	Rock	Depth (m BGL)	Moisture condition	Peak Load (kN)	Is (50) MPa	Rock strength
ТРО2-Р	Sandstone	0.6-1.0	Dry	6.16	3.3	Very High Strength
TP02-P	Sandstone	0.6-1.0	Dry	3.87	2.0	High Strength
TP02-P	Sandstone	0.6-1.0	Dry	4.26	2.2	High Strength
ТРО2-Р	Sandstone	0.6-1.0	Dry	2.86	2.0	High Strength
ТРО2-Р	Sandstone	0.6-1.0	Dry	3.94	3.2	Very High Strength
TP02-P	Sandstone	0.6-1.0	Dry	5.65	3.6	Very High Strength
TP02-P	Sandstone	0.6-1.0	Dry	5.74	2.8	High Strength
ТРО2-Р	Sandstone	0.6-1.0	Dry	4.98	3.4	Very High Strength

The point load testing summarised in Table 9 indicates that the rock encountered during investigation is generally of high and very high strength.

4.4.6 Aggressivity

The Australian Standard AS2159-2009 provides criteria for assessment of the level of exposure classification for steel and concrete to enable the designers to incorporate protective measures for each element into the design. The assessment criteria are based upon the pH, concentrations of Sulphate and Chloride in soil, the soil permeability, and the groundwater level.

Soil aggressivity testing was undertaken on four (4) samples recovered from test pits. An assessment of the exposure classification for each of the soil samples tested based on the above criteria is presented in Table 10.

Table 10. Aggressivity Test Results

		Sulphates (SO ₄) in		Chlorides in		Exposure c	lassification
Test Pit ID	Soil type	soil (mg/kg - ppm)	pН	groundwater (mg/kg- ppm)	Resistivity ohm.cm	Aggressive to steel	Aggressive to concrete
TP01WS	Clayey SILT	27	7.6	67	14000	Non-Aggressive	Non-Aggressive
TP07-L	Clayey SILT	35	8.7	280	3800	Non-Aggressive	Non-Aggressive
TP09-L	Sandy CLAY	33	8.4	210	5100	Non-Aggressive	Non-Aggressive
TPNW02-L	Silty CLAY	<10	7.1	<10	110000	Non-Aggressive	Non-Aggressive

5 Preliminary Pavement Design

5.1 Design Traffic

Design traffic loadings and pavement thickness design calculation has been undertaken by EP Risk in general accordance with *Mid-Western Regional Council Development Engineering Guidelines* for the roads and in the proposed development for the expected traffic volumes and type. The design traffic data has been determined based on the following assumptions in Table 11Error! Reference source not found..

Table 11. Recommended Road Type and Design ESA's

Road Type	Road Identification	Design ESA's
Collector	TBC	6.0 x 10 ⁵
Local Access Road	TBC	2.0 x 10 ⁵

Where traffic data varies from the above assumptions a review of pavement design may be required.

5.2 In-situ Testing

The DCP test can be used to provide a correlation with in-situ (field) CBR estimated in accordance with Austroads (2017). The field CBR versus laboratory CBR values are presented in Table 12 and the in-situ CBR values for substrata for the pavement boreholes are presented in the Figure 4.

Table 12. In-situ (field) CBR Values Versus Soaked CBR

TP	Material Classification	Depth (m BGL)		Average Field CBR	Laboratory
		Тор	Bottom	(%) *	CBR (%)
TP01-P	RESIDUAL SOIL: Sandy CLAY	0.2	0.8	17	**
TP02-P	RESIDUAL SOIL: Sandy CLAY	0.2	0.6	29	**
ТРОЗ-Р	RESIDUAL SOIL: Silty CLAY	0.2	0.5	11	8
TP04-P	XW SHALE: Sandy CLAY	0.2	0.5	21	**
TP05-P	RESIDUAL SOIL: Silty CLAY	0.2	0.5	28	11
TP06-P	XW SHALE: Sandy CLAY	0.2	0.6	17	**
ТРО7-Р	RESIDUAL SOIL: Sandy CLAY	0.2	0.8	8	4.5
TP08-P	RESIDUAL SOIL: Silty CLAY	0.2	0.8	11	**
TP09-P	RESIDUAL SOIL: Silty CLAY	0.2	0.8	12	4.5
TP10-P	RESIDUAL SOIL: Silty CLAY	0.2	0.5	23	5
TP11-P	RESIDUAL SOIL: Sandy CLAY	0.2	0.8	8	**
TP12-P	XW SANSTONE: Sandy CLAY	0.2	0.8	18	4.5
TP13-P	RESIDUAL SOIL: Sandy CLAY	0.2	0.8	10	8
TPNW01-P	XW SANSTONE: Sandy CLAY	0.2	0.6	25	**
TPNW02-P	XW SANSTONE: Sandy CLAY	0.2	0.8	23	**
TPNW03-P	XW SANSTONE: Sandy CLAY	0.2	0.7	22	**

^{**} not tested

Figure 4. CBR (%) from DCP Tests Versus Depth

The CBR at the estimated subgrade level ranges between 2% to 67%. It is noted an unreliable correlation between the in-situ CBR and laboratory values. This could be attributed to the moisture content of the soil in situ being generally drier than the optimum moisture content and granular nature of materials and presence of XW Rock. Pavement Design Parameters

Pavement thickness design has been performed in accordance with Austroads, AGPT02-17 Guide to Pavement Technology, Part 2: Pavement Structural Design (Austroads AGPT02-17, 2017) based on the following parameters.

- Design subgrade CBR of 3% for Sandy/Silty CLAY subgrade and 6% for weathered rock subgrade.
- A Design for subgrade with CBR less than 4% using select layer is also provided and recommended if CBR swell ≥2.5% is encountered.

Final pavement outcomes will be determined by regrade activities in large portions of the Site. The design subgrade has been determined in accordance with Section 5 of Austroads (2017) based on results for both laboratory and field testing undertaken on this investigation and will require confirmation following completion of regrade.

A CBR of 6% for extremely weathered bedrock is considered as the material was not pre-treated prior to CBR testing and it is prone to breakdown.

5.3 Preliminary Pavement Thickness Design

The design for pavement construction utilising flexible unbound pavement materials is detailed in Table 13 and Table 14.

Table 13. Recommended Flexible Pavement Compositions

Pavement Layer	Road Type - Local	Road Type - Local	Road Type - Local
Wearing Course (mm)*	30 AC10with 7mm primer seal	30 AC10 with 7mm primer seal	30 AC10 with 7mm primer seal
Base Course (mm)	150	150	150
Subbase (mm)	220	120	120
Select (mm)*/**	-	300	-
Total Thickness (mm)	400	600	300
Subgrade CBR (%)	4%	4%	6%
Allowable DESA	2 x 10 ⁵	2 x 10 ⁵	2 x 10 ⁵

^{*}Where a 2-coat bituminous seal is utilised as a wearing course, the subbase should be increased by 30mm.

Table 14. Recommended Flexible Pavement Compositions

Pavement Layer	Road Type - Collector	Road Type - Collector	Road Tye - Collector
Wearing Course (mm)*	45 AC14 (AR45 Binder) with 7mm primer seal	45 AC14 (AR45 Binder) with 7mm primer seal	45 AC14 (AR45 Binder) with 7mm primer seal
Base Course (mm)	150	150	150
Subbase (mm)	225	125	150
Select (mm)**/* **	-	280	-
Total Thickness (mm)	420	600	345
Subgrade CBR (%)	4%	4%	6%
Allowable DESA	6 x 10 ⁵	6 x 10 ⁵	6 x 10 ⁵

^{*} Where a 2-coat bituminous seal is utilised as a wearing course, the subbase should be increased by 45mm

A minimum of fourteen days duration shall apply prior to application of subsequent asphalt layer(s). That period may be extended or shortened subject to approval by Council. Where acceptable to Council the subbase layer may be reduced to a 150mm layer, and the balance of subbase thickness made up of a select layer of minimum soaked CBR 30% material.

The determination of a weathered rock or sandy clay subgrade suitable to adopt a CBR 6% subgrade should be undertaken by a geotechnical consultant or suitably qualified council engineer. Low strength clay with a soaked CBR of <4% if encountered at DSL shall be removed and replaced with 0.6m of CBR >4% site won material.

^{**}Where reactive clay has a CBR swell ≥2.5% of a soaked CBR of ≤4% the pavement option using a select subgrade should be adopted.

^{***}Subject to inspection and proof rolling of the subgrade by Council or the geotechnical engineer a select layer may be required

^{**}Where reactive clay has a CBR swell ≥2.5% of a soaked CBR of ≤3% the pavement option using a select subgrade should be adopted.

^{***}Subject to inspection and proof rolling of the subgrade by Council or the geotechnical engineer a select layer may be required

Where weathered sandstone/siltstone/shale is encountered at design subgrade level (DSL) the pavement thickness design as indicated in Table 13 and Table 14 should be adopted. Where consistent sandstone bedrock is encountered at design subgrade level, adoption of the CBR 6% design is appropriate following ripping and recompaction to a depth of 300mm below DSL.

As the extent of regrade is unknown at this stage, the design subgrade CBR will be dependent on the extent of regrade activities and final vertical and horizontal alignments. CBRs should be undertaken once final alignments are known during construction.

5.3.1 Preliminary Pavement Thickness Design – Roundabout

According to the Council's Engineering Guidelines the roundabouts are to be constructed using 320 Grade, full-depth asphalt. One test pit has been excavated at the location of each proposed roundabout. The CBR tests conducted on bulk selected samples from both test pits (TPNE03-P, TP13-P) indicated soaked CBR of 8%. A conservative approach for design of CBR 6% have been considered for the proposed roundabouts due to the potential breakdown of material. A select layer of 150mm thickness has been considered above the subgrade to facilitate the construction of the full asphalt pavement. Details about the thickness design calculations using CIRCLY software are presented in **Appendix F – Pavement Thickness Calculations**.

Table 15. Preliminary Pavement Thickness Design Roundabout

Pavement Layer	Road Type - Local	Road Type - Collector
Wearing Course (mm)	50 AC14 Dense Graded (HD C450 binder)	50 AC14 Dense Graded (HD C450 binder)
Intermediate Asphalt Layer (mm)	75 AC20 Dense Grade (HD C450 binder)	95 AC20 Dense Grade (HD C450 binder)
Select (mm)*/**	150	150
Total Thickness (mm)	275	295
Subgrade CBR (%)	6%	6%
Allowable DESA	2 x 10 ⁵	6 x 10 ⁵

^{*}Where reactive clay has a CBR swell ≥2.5% of a soaked CBR of ≤4% the pavement option using a select subgrade should be adopted.

**Subject to inspection and proof rolling of the subgrade by Council or the geotechnical engineer a select layer may be required

A rigid pavement could be considered for the internal roundabouts as alternative to the full asphalt pavement. The proposed locations for the internal roundabouts are in an area with shallow extremely weathered sandstone hence a CBR of 6% is considered adequate for the pavement design. A 190mm of 5.5 MPa flexural strength Steel Fibre Reinforced Concrete Pavement (SFRC) with integrally cast shoulder over 150mm of bound subbase would be appropriate for a design subgrade of CBR 6% for a traffic 2 x 10^5 ESA. A 197mm of 5.5 MPa flexural strength Steel Fibre Reinforced Concrete Pavement (SFRC) with integrally cast shoulder over 150mm of bound subbase would be appropriate for a design subgrade of CBR 6% and a design traffic of 6 x 10^5 ESA.

Reinforcing and jointing detailing to be undertaken by an experienced structural engineer. The proposed pavement rigid design is detailed in Table 16 with concrete pavement design sheet provided in **Appendix F** – **Pavement Thickness Calculations.**

Table 16. Recommended rigid pav	rement roundabout (SFRC)
---------------------------------	--------------------------

Layer	Material	Material
Base*	190 mm thick Pavement (SFRC) * Min Flexural Strength of 5.5 MPa (28 days)	197 mm thick Pavement (SFRC) * Min Flexural Strength of 5.5 MPa (28 days)
Curing/debonding	7 mm low cutter seal or other suitable interlayer debonding layer	7 mm low cutter seal or other suitable interlayer debonding layer
Subbase (mm)	150mm Bound Subbase	150mm Bound Subbase
Subgrade CBR (%)	min 6%	min 6%
Allowable DESA	2 x 10 ⁵	6 x 10 ⁵

5.4 Subgrade Preparation

Where construction of a new pavement is proposed, subgrade preparation should be in general accordance with the following procedures:

- Remove topsoil/fill to the design subgrade level (DSL).
- Excavation or residual soil/ weathered bedrock to design subgrade level.
- Ripping the insitu subgrade (including weathered bedrock) 300-350mm below DSL and recompact to a
 minimum 100% of SMDD. Moisture content should be within 70% to 90% of SOMC (generally -3% to
 1% dry of SOMC) and care is required not to compact the subgrade at high levels of relative compaction
 at moisture significantly dry of SOMC as this will create swell potential, particularly in
 reactive/expansive clay subgrades.
- Static proof-rolling of the exposed subgrade using a heavy (minimum 10 tonne) roller under the direction of an experienced geotechnical consultant.
- Loose or yielding areas should be excavated and replaced with compacted select fill or suitable subgrade replacement comprising of material of similar consistency to the subgrade.
- Testing of the subgrade by soaked CBR testing to confirm the design parameters.

Where filling or subgrade replacement is required, the materials employed should be free of organics or other deleterious material. The material should also have a maximum particle size of 100mm or one third of the layer thickness, with a minimum soaked CBR of 4% or 6% depending on pavement option adopted. Select subgrade replacement should be utilised where CBR <4% subgrade is encountered. Following satisfactory preparation of the subgrade, the pavement should be placed in accordance with the designer's recommendations.

Careful material management strategies will be required to obtain optimal pavement and Site Classification outcomes with more reactive lower strength material placed at lease 0.75m below design levels.

5.5 Materials

Pavement materials and compaction requirements for new pavement construction should be conform to Mid-Western Regional Council requests and the following conditions in Table 17.

Table 17. New Unbound Pavement Construction: Material Specification and Compaction Requirements

Pavement Course	Material Specification Recommendation	Compaction Requirements	
Base Course High quality crushed rock (Class 2 for local roads)	Material complying with TfNSW QA Specifications 3051 Category D (local) CBR ≥80%, with 2% < PI < 6%	Min 98% Modified (AS 1289 5.2.1) or Min 102% Standard (AS 1289 5.1.1)	
Subbase Subbase quality crushed rock	Material complying with TfNSW QA Specifications 3051 Category D and CBR ≥30% with PI < 10%	Min 95% Modified (AS 1289 5.2.1) or Min 100% Standard (AS 1289 5.1.1)	
Select	CBR ≥30%	Min 100% Standard (AS 1289 5.1.1)	
Subgrade or replacement	Minimum CBR≥4% or 6% depending on pavement option.	Min 100% Standard (AS 1289 5.1.1)	

All granular pavement material quality should be in general accordance with TfNSW QA Specification 3051 for Traffic Category D "Light" for local roads. Where recycled base or subbase are proposed conformance with the Council specifications is required.

Minimum testing on all potential imported pavement materials should be in accordance with TfNSW 3051 Ed 7. Pre-treatment of material prior to testing would be advisable for materials subject to breakdown.

5.5.1 Wearing Course

Wearing courses should be in accordance with Mid-Western Regional Council specifications and with reference to Austroads AGPT04B-07 Guide to Pavement Technology, Part 4B: Asphalt.

The design and construction of wearing courses should be in in consultation with the preferred supplier considering traffic volume and type. All pavement surfaces should be primer sealed prior to the application of the asphaltic concrete ('AC') wearing course. A minimum delay of 14 days is required after the primer seal before placement of the AC wearing course. The delay period on application of the wearing course following primer seal may be altered following discussion with the supplier.

Council specify a minimum 40mm thickness Asphalt Concrete laid upon a sprayed bituminous prime coat for the new urban residential roads.

5.6 Pavement Interface and Tie-in

Where new pavement construction abuts an existing pavement, care should be exercised to either create a clean vertical construction joint or bench into the base course layer for a minimum of 0.5 m for the entire pavement width and match pavement compositions.

Adequate compaction of the subgrade and pavements in the joint/bench area is essential to maximise performance of the pavement. It is noted that where variable pavements are abutted, the potential for localised failure is generally greater. Consideration should be given to sealing any cracks that may develop between existing and new pavements. The use of strain alleviating membranes at the interface may also be appropriate.

It is recommended to install intra-pavement drainage at subgrade level at interfaces of variable existing and new pavements. Where pavements of various thickness abut, the thicker pavement should be tapered / transition over a minimum distance of 5m into the subgrade of the thinner pavement.

5.7 Drainage

The moisture regime associated with a pavement has a major influence on the performance considering the stiffness/strength of the pavement materials is dependent on the moisture content of the material used. Accordingly, to protect the pavement materials from wetting up and softening, particular care would be required to provide a waterproof seal for the pavement materials, together with adequate surface and sub-surface drainage of the pavement and adjacent areas.

Following investigation, observation of the proposed road alignments, and the subgrade conditions, it is recommended that subsoil drainage be installed at, or below subgrade level preferably along both sides of the road. Alternately open swale drains could be considered where designed and positioned below the design subgrade level.

The subgrade should be constructed with sufficient cross fall (in general 3%) to assist in reducing retention time for moisture entering the pavement. The subsoil drains should be located below or behind the kerb to intercept any moisture ingress from outside and within the road alignment. The drains will require flush-out points and regular maintenance to ensure their correct operation. The pavement thickness designs presented above assume drained pavement conditions. The selection, construction and maintenance of appropriate drainage mechanisms will be required for adequate performance.

5.8 Inspections and Testing

The subgrade will require inspection by an experienced geotechnical consultant after boxing out or filling to design subgrade level. The purpose of inspections is to confirm design parameters, assess the suitability of the subgrade to support the pavement, and delineate areas which may require subgrade replacement or remedial treatment prior to construction. This is particularly important where Sandy CLAY subgrade is encountered or where rock subgrade is encountered, and the contractor wishes to transition from the CBR 4% clay subgrade pavement design to the CBR 6% subgrade of weathered rock pavement design.

Soaked CBR testing will be required following the completion of bulk earthworks and site regrade activities to confirm the assumed design parameters and appropriate pavement thickness.

All works and materials used in construction should be constructed in accordance with Council Specifications and as specified in this report. Where discrepancies may occur, clarification should be sought from Council.

5.9 Additional Investigation

Additional investigation should be undertaken to confirm the subgrade design parameters used particularly in areas where the layout varies from the initial investigation. Additional soaked CBR testing is recommended for section of Road 1 Road 21 and the roundabout not previously investigated at the time of construction to confirm subgrade conditions and design CBR.

6 Preliminary Site Classification

AS2870-2011, 'Residential Slabs and Footings', sets out criteria for the classification of a site, the design and construction of a footing system for a single dwelling house, townhouse, or a similar structure. The standard can also be used for other forms of construction, including some light industrial, commercial, and institutional buildings if they are similar in size, loading and performance expectation to a typical domestic structure using engineering principles. Site classes as defined on Table 2.1 and 2.3 of AS 2870 are presented in Table 18.

Table 18. General Definition of Site Classes

Site Class	Foundation	Characteristic Surface Movement
А	Most sand and rock sites with little or no ground movement from moisture changes	
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes	0 - 20mm
М	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes	20 - 40mm
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes	40 - 60mm
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes	60 - 75mm
E	Extremely reactive sites, which may experience extreme ground movement from moisture changes	> 75mm
A to P	Filled sites (refer to clause 2.4.6 of AS 2870)	
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise.	

Reactive sites are sites consisting of cohesive soils that swell on wetting and shrink on drying, resulting in ground movements that can damage lightly loaded structures. The amount of ground movement is related to the physical properties of the clay and environmental factors such as climate, vegetation, and watering. A higher probability of damage can occur on reactive sites where abnormal moisture conditions occur, as defined in AS 2870, due to factors such as:

- Presence of trees on the building site or adjacent site, removal of trees prior to or after construction, and the growth of trees too close to a footing. The proximity of mature trees and their effect on foundations should be considered when determining building areas within each allotment (refer to AS 2870).
- Failure to provide adequate site drainage or lack of maintenance of site drainage, failure to repair plumbing leaks and excessive or irregular watering of gardens.
- Unusual moisture conditions caused by removal of structures, ground covers (such as pavements), drains, dams, swimming pools, tanks etc.

Regarding the performance of footings systems, AS 2870 states "footing systems designed and constructed in accordance with this Standard on a normal site (see Clause 1.3.2) that is:

- (a) not subject to abnormal moisture conditions; and
- (b) maintained such that the original site classification remains valid and abnormal moisture conditions do not develop.

are expected to usually experience no damage, a low incidence of damage category 1 and an occasional incidence of damage category 2."

Damage categories are defined in Appendix C of AS 2870, which is reproduced in CSIRO Information Sheet BTF 18, **Appendix G - Foundation Maintenance and Footing Performance**.

The laboratory Shrink Swell test results summarised in Table 7 indicate that the tested Sandy CLAY soils returned lss values ranging from 1.1% (in TP04-L) to 2.7 % (in TPW01-L).

The classification of sites with controlled fill of depths greater than 0.4m (deep fill) comprising of material other than sand would be Class P. An alternative classification may however be given to sites with controlled fill where consideration is made to the potential for movement of the fill and underlying soil based on the moisture conditions at the time of construction and the long-term equilibrium moisture conditions.

Based on the subsurface profiles encountered during the Site inspection and in accordance with the AS 2870-2011; the Site in its existing condition and in the absence of abnormal moisture conditions would likely be classified as detailed in Table 19.

Table 19. Anticipated Site Classification

Myall Road, Garden Suburb, NSW	Site Classification
Founded in controlled fill or in stiff of better Sandy/Silty CLAY with rock<1.5m depth	Class S, M-D, H2-D – slightly to highly reactive
Founded in Controlled Fill >1.5 depth	Class M-D, H2-D and E-D medium to extremely reactive

A characteristic surface movement (y_s) in the range of 16mm to 64mm has been calculated for the site dependent on the soil profile, and the depth of design suction (Hs) change of 4m used as per Table 2.5 AS2876-2011 for Climatic Zone 6.

The above site classifications and footing recommendations are for the site conditions present at the time of fieldwork and consequently the site classification may need to be reviewed with consideration of any site works that may be undertaken after the investigation and this report.

Site works may include:

- Changes to the existing soil profile by cutting and filling.
- Reactivity of fill material utilised.
- Landscaping, including trees removed or planted in the general building area; and
- Drainage and watering systems.

Designs and design methods presented in AS 2870-2011 are based on the performance requirement that significant damage can be avoided if site conditions are properly maintained. Performance requirements and foundation maintenance are outlined in Appendix B of AS 2870. The above site classification assumes that the performance requirements as set out in Appendix B of AS 2870 are acceptable and that site foundation maintenance is undertaken to avoid extremes of wetting and drying.

Details on appropriate site and foundation maintenance practices are presented in Appendix B of AS 2870-2011 and in CSIRO Information Sheet BTF 18, Foundation Maintenance and Footing Performance: A Homeowner's Guide. Adherence to the detailing requirement outlined in Section 5 of AS 2870-2011 is essential, Section 5.6. Additional requirements for Classes M-D, H1-D, H2_d and E-D sites, including architectural restrictions, plumbing and drainage requirements.

7 Construction Notes

7.1 Excavatability Assessment

Practical machine refusal for the 13-tonne excavator was encountered on bedrock in eighteen (18) test pits out of thirty-five (35) excavated test pits at depth ranging from 0.73m BGL to 2.9m BGL. The strength of bedrock encountered in test pits assessed by point load testing ranges from high to very high strength. To assess the excavatability of the bedrock the strength range is plotted on the graph in Figure 5 for excavatability as per suggested method by Pettifer and Fookes. The area of the chart covered indicates that very hard ripping by a D9 will be typically the excavation method for the type of rock encountered in the northern part of the site.

Figure 5. Excavatability Assessment after Pettifer and Fookes

Excavations to depths of 1.0m-1.5 m BGL in weathered bedrock are expected to be readily achievable using larger (>20T) conventional earthmoving equipment. Excavations below 2m deep (especially in confined space like trenches) in bedrock may require excavators fitted with tiger teeth buckets, single ripper attachment or rock hammer.

Excavatability conditions have not been assessed beyond the depths to which the test pits were excavated; however, the following general comments regarding rock mass excavatability conditions can be made:

- Rock strength as well as rock mass defect (joint) spacing could be expected to control rock mass excavatability. Rock strength is likely to be variable and layers of weaker rock can underlie stronger bedrock.
- Excavatability could be expected to be dependent on the plant used, the experience of the operator and the degree of confinement within the excavation.

Further investigation is recommended to assess rock strength / excavatability during detailed investigations.

It is recommended that long-term excavations are either battered at 2H:1V or flatter and protected against erosion or be supported by engineer designed and suitably constructed retaining walls. Excavations may be battered steeper than 2H:1V in rock materials, subject to specific geotechnical Investigation.

Excavations or trenches in the Sandy/Silty CLAY and extremely weathered material could be expected to stand close to vertical in the short-term. Granular soils were encountered within various site areas down to depths of up to 0.4m BGL, and unsupported short-term excavations or trenches may undergo some local slumping into the excavation particularly during or following high rainfall periods.

Where personnel are to enter excavations, options for short-term excavations stability include benching or battering back of the excavations to 1H:1V or the support of excavations within the residual soil and extremely weathered rock profile.

The excavation recommendations provided above should be considered with reference to the Safe Work Australia Code of Practice 'Excavation Work', dated January 2020.

7.2 Filling

Fill should be placed and compacted in accordance with AS 3798-2007. It is expected that construction of a suitable fill platform to support structural loads, such as pavements, ground slabs, footing and stiffened raft slabs, would include the following:

- Where wet material is encountered this will likely require treatment or moisture re-conditioning (drying and blending with dryer fill material) prior to placement and compaction.
- Proof rolling of the exposed subgrade to detect any weak or deforming areas of subgrade that should be excavated and replaced with compacted fill.
- Placement of fill in horizontal layers with compaction of each layer to a minimum dry density ratio of 95% Standard Relative Density (Australian Standard AS 1289 Clause 5.1.1) at moisture contents of 85-115% of SOMC. Fill within 0.5m of design subgrade in road alignments is to be compacted to 100% standard relative density at a 70-100% of SOMC. Reactive / Expansive clay materials (if encountered) should be placed as close to SOMC as practical as this will minimise their swell potential. All expansive soils should be placed in the lower layers of the deeper fill areas.

All fill materials should be supported by properly designed and constructed retaining walls or else battered at a slope of 2H:1V or flatter and protected against erosion by vegetation or similar and the provision of adequate drainage. Materials excavated on Site apart from topsoil and fill are considered suitable for re-use as engineering fill. Some materials will likely require treatment such as blending and moisture re-conditioning to produce suitable structural fill, subject to further assessment and weather conditions prior to and during construction. It is noted that clayey sands were encountered in areas of the Site. While these materials have suitable properties when dry they are prone to softening (loss or strength) when wet and can present trafficability and compaction issues when at elevated moisture contents. The sandy material may also prove difficult from an earthworks

perspective and should be either stripped and replaced as surficial layers or blended with more cohesive materials. Material should be managed during regrade to allow use of higher CBR and lower reactivity material in the top 300mm of design subgrade and fill area to provide better pavement and classification outcomes.

Careful material management strategies will be required to obtain optimal pavement and Site Classification outcomes with more reactive lower strength material placed at lease 0.75m below design levels.

7.3 Water Storage Tanks

Two tanks for storage water are proposed to be placed along the eastern boundary of the site. A test pit was excavated in this area TP01-WS identifying loose sand and firm clay up to 0.3m BGL and stiff and very stiff clay up to 1.6m BGL. The shallow layers of firm clay and loose sand are considered inadequate to support the water tanks. The stiff and very stiff clay layers below 0.5m BGL are considered adequate to support loads of 100-125kPa (allowable).

8 Basin Construction

Several sediment control basins are planned to be constructed across the site. The substrata present at one of these locations have been tested and the results are outlined in the following section.

Testing of the subsurface soils in the areas of proposed basin construction indicates that the soils are suitable for the use in construction in selected zones of the proposed basin. The tests indicate the soils are likely to be appropriate for use in a homogeneous or zoned embankment. A zoned embankment may be preferred to allow the use of a lesser quality materials on downstream embankment construction and higher plasticity material used in the clay core.

8.1 Laboratory Testing Results

8.1.1 Fall Head Permeability

One Falling Head Permeability test was undertaken to confirm the design permeability of the basin foundations. Results of the testing are detailed in the laboratory reports attached in **Appendix E – Laboratory Test Results** and summarised in Table 20.

Table 20. Falling Head Permeability Test Results

3) Standard Maximum Dry Density

Sample ID	Depth (m BGL)	Sample Description	W¹ (%)	SOMC ² (%)	SMDD ³ (t/m ³)	Permeability (m/s)
TP02-WS	0.2-0.6	Sandy CLAY	13.4	13.2	1.84	8 x 10 ⁻⁹
Field Moisture Content Standard Optimum Moisture Content						

Permanent and temporary sediment and water detention basin should be designed and constructed in accordance with Mid-Western Regional Council specifications and the requirements from Table 21.

Table 21. Drainage Basin materials and compaction requirements

Zone	Material Specifications	Compaction Requirements	
1- Clay Core / Clay	Liquid limit >50%	98% standard relative density	
Liner &	10% < Plasticity Index (PI) < 50%,	AS1289 5.7.1 at a moisture content	
Embankment Material	Permeability <10 ⁻⁹ m/s	of -1 to +3% of standard optimum	
	Emerson Class >4	moisture	
	Maximum Particle Size <50mm		
	Percentage Clay Content >25		
2 - Outer Embankment	10%< PI <50%,	95% standard relative density	
Material (lower	Permeability < 10 ⁻⁷ m/s	AS1289 5.7.1 at a moisture content	
standard)	Emerson Class >2	of -2 to +2% of standard optimum	
	Maximum Particle Size <75mm	moisture	
	Percentage Clay Content >20 %		
Topsoil	Suitable for sustaining planned vegetation	Not applicable	
	plantings		
Cut-Off Trench /	Minimum Stiff (CL-CH) Clay or better.	Minimum 2.4m wide and keyed into	
Keyway		a minimum depth of 0.5 m into	
		impervious material (compaction as	
		per Zone 1)	

Zone	Material Specifications	Compaction Requirements
Batter Slopes	1 Vertical: 6 Horizontal (Impoundment)	
	1 Vertical: 3 Horizontal (External)	
Spillway	Constructed in accordance with Australian	
	Rainfall and Runoff: A Guide to Flood	
	Estimation, Commonwealth of Australia	
	(Geoscience Australia), 2019.	

Higher plasticity material should be used selectively in the construction of the basin, with the higher plasticity and lower permeability materials used in the construction of the key trench and clay core where a zone embankment is utilised.

8.2 Basin Batters Guidelines

Basins shall be designed and constructed in accordance with Council Engineering Guidelines and the following recommendations.

Embankments should be battered at a slope of 1V:3H or flatter for downstream batters or for batters above the permanent water level and 1V:6H for impoundment areas below the permanent water level or as otherwise agreed with Council or handrails installed to assist egress.

Earthworks and testing shall be undertaken in accordance with AS 3798-2007 Guidelines on Earthworks for Commercial and Residential Developments. Table 21 above provides material requirements guidelines and compaction specifications for the construction of a zoned or non-zoned basin embankment. A zoned embankment can be considered where material of specified quality is limited. In this case attention will be required the location of the core and how it interfaces with the existing embankment.

8.2.1 Foundation Preparation for Embankments

Foundation preparation for new embankments could generally be expected to comprise the following:

- Removal of topsoil and slopewash and excavation of the cut-off trench into stiff or better impervious material and to a minimum depth of 0.5m.
- Inspection by an experienced geotechnical consultant to confirm the suitability of the foundation.
- Proof rolling of the exposed foundation area under the embankment with a heavy (minimum 10 tonne static) roller.
- Soft or weak areas detected during the proof rolling excavated and replaced with compacted fill / subgrade replacement comprising low permeability clay.
- Compaction of the various zones to achieve a minimum dry density ratio as detailed in Table 21.
- Protection of the prepared foundation to prevent excessive wetting or drying prior to placement of embankment fill material.
- Formation of the embankment in accordance with the above recommendations and specifications.

It is recommended that trafficking of the material exposed at foundation level be minimised during construction to prevent the permanent deformation of the subgrade or foundation.

Any abrupt changes between founding conditions, e.g., transition from rock to soil should be eliminated during foundation preparation. This could be expected to involve foundation preparation practices such as selective grading or mixing of material to provide a transition between material types and moisture / density control of

subgrade compaction. This is particularly relevant where Clayey SAND bands/SANDSTONE/SHALE are observed as they will provide potential pathways for groundwater to enter the embankment.

Impoundment Area

The finished surface of the impoundment area should be treated as indicated below following excavation:

- Ripping of impoundment area excluding constructed embankments to a depth of 300mm and recompaction as per Zone 1.
- If rock is exposed at the surface; subject to geotechnical inspection it will either require ripping and recompaction or over excavation and lining with a minimum of 300mm of Zone 1 material, and
- Protection of subgrade to prevent drying cracking of the subgrade prior to filling of the basin.

8.2.2 Cut Off Trench / Keyway

A critical aspect is the construction of the cut-off trench. A cut-off trench or keyway should be a minimum of 2.4 m width or 1.5 times the height of the Basin at the bottom of the trench. The keyway is intended to minimise seepage under the embankment and increase the stability of the Basin embankment and should be designed and constructed accordingly. This includes extending the layer a minimum of 500 mm into stiff or better impervious clay or rock and backfilled with the appropriate quality clay that is thoroughly compacted to the specification requirements.

8.2.3 Vegetation

Topsoil should be spread over the exposed surfaces of the embankment to a depth of at least 150 mm and sown with pasture grass to establish a good cover as soon as possible. Never allow any vegetation larger than pasture grass to become established on or near the embankment. Tree roots, especially eucalyptus tree roots can cause the core to crack resulting in failure of the Basin. As a rule of thumb, trees and shrubs should be kept to a minimum distance of 1.5 times the height of the tree away from the embankment of the Basins. This especially applies to eucalypts.

8.2.4 Basin Construction References

All works and materials used in construction of the basins should be designed and constructed in accordance with Council's specific requirements detailed in their Engineering Design and Construction Guidelines or as specified within this report. Where discrepancies occur clarification should be sought from Council on their requirements.

Earthworks and testing should generally be undertaken in accordance with AS3798-2007 "Guidelines on Earthworks for Commercial and Residential Developments".

9 References

- Austroads AGPT02-17, Guide to Pavement Technology Part 2: Pavement Structural Design, Austroads Ltd, 2017.
- Austroads AGPT04B-07 Guide to Pavement Technology, Part 4B: Asphalt
- Austroads APRG Report No. 18, Selection & design of asphalt mixes: Australian provisional guide, Austroads, May 1997.
- ePlanning Spatial Viewer. (2020). NSW Planning Portal. https://www.planningportal.nsw.gov.au
- eSPADE. (n.d.). NSW Department of Environment and Heritage. https://www.environment.nsw.gov.au
- Mid-Western Regional Council Development Control Plan 2013
- MinView. (2023, May 25). NSW Department of Mining, Exploration and Geoscience. https://minview.geoscience.nsw.gov.au
- Mosaic. (2023). Mecone Mosaic. https://meconemosaic.au
- Standards Australia (2006). Soils Testing (HB 160-2006).
- Standards Australia (2007). Guidelines on Earthworks for Commercial and Residential Structures (AS3798-2007).
- Standards Australia (2009). Piling Design and Installation (AS2159-2009).
- Standards Australia (2011). Residential Slabs and Footings (AS2870-2011).
- Standards Australia (2017). Geotechnical Site Investigations (AS1726-2017).
- Standards Australia (2017). Methods of testing soils for engineering purposes (AS1289-2017).
- TfNSW QA Specification R44 (Ed 5 Rev 0). Earthworks," Roads and Maritime Services, September 2014.

Appendix A PROPOSED DEVELOPMENT LAYOUT PLANS

PROPOSED DEVELOPMENT OF LOT 1 D.P.174385 & LOT 1 D.P.1003242

313 MAGPIE LANE, GALAMBINE

INDEX OF DRAWINGS No. TITLE NAME

SHELT NO.		TITLE INAIVIE
	1 2	COVER SHEET, LOCATION DIAGRAM & DRAWING INDEX OVERALL DEVELOPMENT PLAN
	3	OVERALL CONSTRAINTS PLAN
	4	DETAIL PLAN OF SHORT TERM SITES
	5	DETAIL PLAN OF LONG TERM SITES - SHEET 1
	6	DETAIL PLAN OF LONG TERM SITES - SHEET 2
	7	DETAIL PLAN OF LONG TERM SITES - SHEET 3
	8	DETAIL PLAN OF LONG TERM SITES - SHEET 4
	9	SITE PLAN
	10	WATERCOURSE PLAN
	11	ZONE PLAN
	12	NATURAL TOPOLOGY PLAN
	13	SLOPE ANALYSIS PLAN
	14	BUSHFIRE ASSET PROTECTION PLAN
	15	SEWER RISING MAIN CONNECTION
	16	SEWER DEVELOPMENT DETAIL PLAN
	17	WATER DEVELOPMENT DETAIL PLAN
	N. Committee of the Com	

r. date comment drawn pm co-ordinate information level information scale (A1 original size) notes
23.02.2024 UPDATE AMENITIES BUILDINGS R.C. M.E. CO-ORDINATE SYSTEM: MGA 94 DATUM: N/A CONTOUR INTERVAL: N/A SCALE: 10.000 (FULL) SHEET 1 OF 17

Construction
Pty.Ltd.

central coast office ph: (02

Pty.Ltd. johnson

central coast office ph: (02) 4305 4300
hunter office ph: (02) 4978 5100
sydney office ph: (02) 8046 7411

council: Mid Western Regional dwg ref: 240401-DA-001-B

CAMEngineering &

LOCATION DIAGRAM OF LOT 1 D.P.174385 & LOT 1 D.P.1003242

313 Magpie Lane,

Appendix B

Plate 1

Description: looking north towards Magpie Lane

Date:10/07/2023

Plate 2

Description: Northern section of the site

Date:10/07/2023

site

Plate 5

Description: Rock fragments in the northern section of the site

Date: 10/07/2023

Plate 6

Description: General view of the site

Date:10/07/2023

Plate 7

Description: Tree line along Guntawang Road

Date: 10/07/2023

Plate 8

Description: Looking southeast

Date:10/07/2023

Description: Looking south

Date: 10/07/2023

Plate 10

Description:
Ground
Penetration
radar used on
Guntawang
Road

Description: Traffic Control setup on Guntawang Road

Date: 11/07/2023

Plate 12

Description:
Setup for
investigation
on Guntawang
Road

Plate 13

Description: Exclusion zone for investigation on Guntawang Road

Date: 11/07/2023

Plate 14

Description: Rock subgrade on Guntawang Road

Plate 15

Description: Magpie Lane view

Date: 11/07/2023

Plate 16

Description: Northern part of the site

Description: Roundabout view northern section

Date: 12/07/2023

Plate 18

Description: monitoring well on site

Plate 19

Description: General view of the site

Date: 12/07/2023

Plate 20

Description: Site dam in the northern section

Description: looking north towards intersection Guntawang Road and Magpie Lane

Date: 12/07/2023

Plate 22

Description:
Dam in the
central area of
the site

Description: Hill recontouring in the northern section of the site

Date: 12/07/2023

Plate 24

Description: Shed and container on site

Appendix C GEOTECHNICAL INVESTIGATION LCOATIONS

www.eprisk.com.au

313 Magpie Lane, Galambine, NSW 2850

Investigation Locations

Job No: EP3229 Date: 15/8/23 **Drawing Ref: Fig 1 Version No: v1**

Coordinate System: WGS 84 Drawn by: MC Checked by: OP Scale of regional map not shown **Source: Near Map / Six Maps**

Appendix D

Soil Logging Symbols

CLAYS

CLAY

silty CLAY

sandy CLAY

gravelly CLAY

SILTS

SILT

clayey SILT

sandy SILT

gravelly SILT

SANDS

SAND

clayey SAND

silty SAND

gravelly SAND

GRAVELS

GRAVEL

clayey GRAVEL

silty GRAVEL

sandy GRAVEL

SEDIMENTARY ROCK

SANDSTONE

SILTSTONE

SHALE

CONGLOMERATE

FILL

FILL

CONCRETE

ASPHALT

GROUNDWATER WELL SYMBOLS

WELL SCREEN

CASING - filter pack

CASING - backfill

CASING – bentonite seal

CASING – grout seal

BACKFILL

OTHER

TOPSOIL - sandy SILT

TOPSOIL – highly organic

Rock Description Explanation Sheet (1 of 2)

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

	Rock Material Weathering Classification						
Weathering Grade	Symbol	Definition					
Residual Soil	RS	Soil-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume, but the material has not been significantly transported.					
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water, but substance fabric and rock structure still recognisable.					
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.					
Moderately Weathered Rock	MW	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The intact rock strength is usually noticeably weaker than that of the fresh rock.					
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.					
Fresh Rock	FR	Rock shows no sign of decomposition or staining.					

Notes

- 1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.
- 2. Extremely weathered rock is described in terms of soil engineering properties.
- 3. Weathering may be pervasive throughout the rock mass or may penetrate inwards from discontinuities to some extent.
- 4. The 'Distinctly Weathered (DW)' class as defined in AS1726-2017 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rock Strength):

Strength of Rock Material

(Based on Point Load Strength Index, corrected to 50mm diameter $-I_{s(50)}$. Field guide used if no tests available. Refer to AS 4133.4.1-2007.

Term	Symbol	Point Load Index (MPa)		Field Guide to Strength					
		I _{s(5}	0)						
Very Low	VL	>0.03	≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3cm thick can be broken by finger pressure.					
Low	L	>0.1	≤0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.					
Medium	М	>0.3	≤1.0	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.					
High	Н	>1	≤3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.					
Very High	VH	>3	≤10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.					
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.					

Notes:

- 1. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.
- ${\bf 2.} \quad {\bf Anisotropy} \ {\bf of} \ {\bf rock} \ {\bf material} \ {\bf samples} \ {\bf may} \ {\bf affect} \ {\bf the} \ {\bf field} \ {\bf assessment} \ {\bf of} \quad {\bf strength}.$
- 3. Extremely Low Strength ('EL') is now not considered a description of rock strength in line with the updated AS1726-2017 as by definition EL rock should be described in terms of soil properties.

Rock Description Explanation Sheet (2 of 2)

Discontinuity Description: Refer to AS1726-2017, Table A10.

Discont	maily bescription. Refer to
Anisotr	opic Fabric
BED	Bedding
FOL	Foliation
LIN	Mineral lineation
Defect	Туре
LP	Lamination Parting
Pt	Bedding Parting
FP	Cleavage / Foliation Parting
Jt	Joint
SZ	Sheared Zone
CZ	Crushed Zone
BZ	Broken Zone
HFZ	Highly Fractured Zone
ΑZ	Alteration Zone
VN	Vein

Roughne	Roughness (e.g. Planar, Smooth is abbreviated Pln / Sm) Class					
			Rough or irregular (R or	Irr)	I	
Stepped	(Stp)		Smooth (Sm)		Ш	
			Slickensided (SI)		III	
			Rough (R)		IV	
Undulati	ng (Ur	n)	Smooth (Sm)		٧	
			Slickensided (SI)		VI	
			Rough (R)		VII	
Planar (P	ln)		Smooth (Sm)		VIII	
			Slickensided (SI)		IX	
Aperture	•	Infilling				
Closed	CD	No visible	coating or infill	Clean	Cn	
Open OP Surfaces di			iscoloured by mineral/s Stain		St	
Filled	FL	Visible mir	Veneer	Vr		
Tight	TI	Visible mir	neral or soil infill >1mm	Coating	Ct	

Other	
Clay	Clay
Fe	Iron
Со	Coal
Carb	Carbonaceous
Sinf	Soil Infill Zone
Qz	Quartz
Ca	Calcite
Chl	Chlorite
Ру	Pyrite
Int	Intersecting
Inc	Incipient
DI	Drilling Induced
Н	Horizontal
V	Vertical

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spacing: On the geotechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS1726-2017, BS5930-1999.

D	efect Spacing		Bedding Thickness (Sedimentary Rock Stratification)				
Spacing/Width (mm)	Descriptor	Symbol	Descriptor	Spacing/Width (mm)			
			Thinly Laminated	< 6			
<20	Extremely Close	EC	Thickly Laminated	6 – 20			
20 – 60	Very Close	VC	Very Thinly Bedded	20 – 60			
60 – 200	Close	С	Thinly Bedded	60 – 200			
200 – 600	Medium	М	Medium Bedded	200 – 600			
600 – 2000	Wide	W	Thickly Bedded	600 – 2000			
2000 – 6000	Very Wide	VW	Very Thickly Bedded	> 2000			
>6000	Extremely Wide	EW					

Defect Spacing in 3D						
Term	Description					
Blocky	Equidimensional					
Tabular	Thickness much less than length or width					
Columnar	Height much greater than cross section					

Defect Persistence	
(areal extent)	
Trace length of defect given in	
metres	

Symbols: The list below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

	٦	Test Resu		Test Symbols	
PI	Plasticity Index	c′	Effective Cohesion	DCP	Dynamic Cone Penetrometer
LL	Liquid Limit	Cu	Undrained Cohesion	SPT	Standard Penetration Test
LI	Liquidity Index	C'R	Residual Cohesion	СРТи	Cone Penetrometer (Piezocone) Test
DD	Dry Density	φ′	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	фи	Undrained Angle of Internal Friction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	φ′ _R	Residual Angle of Internal Friction	U50	Undisturbed Sample 50 mm (nominal diameter)
МС	Moisture Content	Cv	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
oc	Organic Content	m_{ν}	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	Cαε	Coefficient of Secondary Compression	Pm	Pressuremeter
WLS	Weighted Linear Shrinkage	е	Voids Ratio	FSV	Field Shear Vane
DoS	Degree of Saturation	ϕ'_{cv}	Constant Volume Friction Angle	DST	Direct Shear Test
APD	Apparent Particle Density	q _t / q _c	Piezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate
Su	Undrained Shear Strength	\mathbf{q}_{d}	PANDA Cone Resistance	PLI	Point Load Index Test (axial)
qu	Unconfined Compressive Strength	I _{s(50)}	Point Load Strength Index	D	Point Load Test (diametral)
TCR	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (irregular lump)

Groundwater level	- Water Inflow	Water Outflow
-------------------	----------------	---------------

Engineering Log - Test Pit

SHEET 1 OF 1

	Clier Proje						id Construction					roject No		P3229 P
	Loca					bine NSW						hecked I		OP
				avat		10.7.23	Northing	6411134.00	Slope	9	0°	Equ	ipment	Komatsu 13T
	Completed Excavation 10.7.23 Easting 734232.00 Bearing								-	Gro	und Lev	vel 437 AHD		
E	(CA)	/ATI	ON	ı			MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	tered			W.W.	sc	TOPSOIL: San grained sand	dy CLAY: low to r	nedium plasticity, brown	, fine to medium		F	2		TOPSOIL
	Not Encountered	- - - -			CI- CH	Silty CLAY: me grained sand	bbles and cobbles	ticity, pale brown, with fir		<pl< td=""><td>St to VSt</td><td>3 3 5 8 11 22</td><td></td><td>RESIDUAL SOIL</td></pl<>	St to VSt	3 3 5 8 11 22		RESIDUAL SOIL
ш			1		SC	coarse grained	, grey and pale br		AND, fine to	D	D to VD		В	EXTREMELY WEATHERED ROCK
		- - - - - - - - - - - - - - - - - - -	3			Test Pit TP01-L	Terminated at 2.	.10 m						Refusal on bedrock
	Rem	arks	s: 											

EP3229 - CAM Engineering Galambine Magpie Lane Geotechnical Investigation

Engineering Log - Test Pit

SHEET 1 OF 1

Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other colour and other co	Client Project	CAM Engineering and Construction Pty Ltd Preliminary Geotechnical Investigation	Project No. EP3229 Logged By OP
Completed Excavation 10.7.23 Easting 734161.00 Bearing Ground Level 436 AHD	Location	Galambine NSW	Checked By OP
EXCAVATION MATERIAL DESCRIPTION Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other component			
Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other colour a	Completed E	Excavation 10.7.23 Easting 734161.00 Beari	earing Ground Level 436 AHD
Description of Soil (solitype; plasticity)grainsize, colour and other components) Soil S	EXCAVATION	N MATERIAL DESCRIPTION	TESTING, SAMPLING & OTHER INFORMA
D L 2 RESIDUAL SOIL	Method Water RL (m) Depth (m)	Description of Soil (soil type: plasticity/grainsize, colour and other components)	origin, pocket penetrometer va
SC Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, grey, yellow and red D D D D D D D D D D D D D D D D D D D	untered	TOPSOIL: Clayey SAND: fine to medium grained, brown	D L I I I I I I I I I I I I I I I I I I
coarse grained, grey, yellow and red 14 15 Test Pit TP02-L Terminated at 1.70 m Refusal on bedrock	Not Encor		PL VSt to H 15 B RESIDUAL SOIL
434 2	+	SC Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, grey, yellow and red	14 D to
	433 3		Refusal on bedrock
Remarks:	Remarks:		

EP3229 - CAM Engineering Galambine Magpie Lane Geotechnical Investigation

	Clien Proje			Pre	elimi	ingineering and					L	roject No	y O	
L	_oca	tion		Ga	lamb	bine NSW					С	hecked I	Зу О	P
				avati		10.7.23	Northing	6410970.00	Slope	90			ipment	Komatsu 13T
				_	vatio	on 1.7.23	Easting	734229.00	Bearing		-		und Lev	
EX	CAV	ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	tered			WW	CL- CI	TOPSOIL: Sand grained sand	ly CLAY: low to r	nedium plasticity, brown,	fine to medium	<pl< td=""><td></td><td>2</td><td></td><td>TOPSOIL</td></pl<>		2		TOPSOIL
	Not Encountered	_			CI- CH	Silty CLAY: med	lium to high plas	ticity, brown		~PL	F	2		RESIDUAL SOIL
ш		-	_		CI- CH	Extremely weath plasticity, grey	nered Shale reco	vered as Sandy CLAY, n	nedium to high	< <pl< td=""><td>VSt to H</td><td>8 17 25</td><td>В</td><td>EXTREMELY WEATHERED ROCK</td></pl<>	VSt to H	8 17 25	В	EXTREMELY WEATHERED ROCK
	4	37	1			Test Pit TP03-L	Terminated at 0.	90 m						Refusal on bedrock
F	Rem	arks	;;								•			

F	Clier Proje Loca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation oine NSW		L	Project No ogged B Checked I	y C	EP3229 DP DP
				avati Exca		10.7.23 Northing 6410893.00 Slope on 10.7.23 Easting 734104.00 Bearing		0° -		uipment ound Lev	
EX	CAV	/ATI	ON			MATERIAL DESCRIPTION			TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	-	-		CL- CI	TOPSOIL: Sandy CLAY: low to medium plasticity, brown, fine to medium grained sand		F to	1		TOPSOIL
	Not	-	-		CL- CI	Sandy CLAY: low to medium plasticity, pale brown, fine to coarse grained sand, with ferruginous cementations (50mm-100mm)	<pl< td=""><td>St</td><td>3</td><td>В</td><td>RESIDUAL SOIL</td></pl<>	St	3	В	RESIDUAL SOIL
		-	_					VSt to H	25	U50	-
ш		-			SC	Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, grey			_		EXTREMELY WEATHERED ROCK
	. 4	34 - - - - -	- 1 				D	D to VD			
			2			Test Pit TP04-L Terminated at 1.80 m					Refusal on bedrock
F	Rem	l arks	i								

	Clier Proje					ingineering an nary Geotechi						roject No		P3229
	oca					bine NSW						hecked I		P
				avati		10.7.23	Northing	6410816.00	Slope	90	0°		uipment	Komatsu 13T
					vatio	on 10.7.23	Easting	734225.00	Bearing		-		und Le	
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, tther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	untered	_		**************************************	CL- CI	TOPSOIL: Sand grained sand	dy CLAY: low to i	medium plasticity, black	x, fine to medium		F to	1		TOPSOIL
	Not Encountered	-			CL- CI	Sandy CLAY: lo sand	ow to medium pla	sticity, brown, fine to m	edium grained	<pl< td=""><td>St</td><td>3</td><td></td><td>RESIDUAL SOIL</td></pl<>	St	3		RESIDUAL SOIL
ш		-			CI-	Extremely weat	thered Shale reco	overed as Sandy CLAY,	medium to high			19		EXTREMELY WEATHERED ROCK
		-	_		СН	plasticity, grey a	and pale brown			< <pl< td=""><td>VSt to H</td><td></td><td></td><td></td></pl<>	VSt to H			
		-	_	///		Test Pit TP05-L	. Terminated at 0	.73 m						Refusal on bedrock
	4	36	1											
F	Rem	arks	:											

1	Clier Proje	ect		Pre	elimi	nary Geotech	nd Construction				L	roject No	y C	P3229 PP
	_oca	tion		Ga	laml	bine NSW					С	checked I	Ву С)P
				avati		11.7.23	Northing	6410732.00	Slope		0°		uipment	
					vatio	on 11.7.23	Easting	734023.00	Bearing			1	ound Lev	
EX	CA\	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: pl	ption of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	_			SC	TOPSOIL: Clay	ey SAND: fine to	medium grained, grey				2		TOPSOIL
	Not Enc	-	_							D	MD	3		
		=	=		CL- CI	Extremely wea	thered Sandstone	recovered as Sandy CL ined sand, yellow, grey a	AY, medium to			12		EXTREMELY WEATHERED ROCK
		-	_		Ci	riigri piasticity,	ille to coarse grai	ined sand, yellow, grey a	and brown			14		
ш		-	-									16	В	
		- 32	-							< <pl< td=""><td>н</td><td></td><td></td><td></td></pl<>	н			
	4	- 32	-'											
		-												
	-	-	-			Test Pit TP06-l	_ Terminated at 1.	40 m						Refusal on bedrock
		-	_											
		-												
		-												
	-	31												
		-												
		-	_											
		-												
		-	+											
		- 30	3											
		_												
		-	 -											
		_	_											
	Rem	arks	S:											

	Clier Proje			Pre	elim	nina	ary Geotech	d Constructio				L	roject No	y C	P3229 PP
	Loca	ition		Ga	alan	nbi	ne NSW					C	hecked	Ву С)P
				avati			10.7.23	Northing	6410708.00	Slope		0°		uipment	
(Com	plete	ed	Exca	avat	tior	n 10.7.23	Easting	734160.00	Bearing		-	Gro	ound Lev	vel 438 AHD
EX	(CA)	/ATI	ON					MATERIA	L DESCRIPTION				TEST	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification			(soil type: p	iption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	-		W.W	CL.		TOPSOIL: San grained sand	dy CLAY: low to	medium plasticity, grey, t	fine to medium	<pl< td=""><td></td><td>1</td><td></td><td>TOPSOIL</td></pl<>		1		TOPSOIL
ш					CL	-	Extremely weat		overed as Clayey SILT, k	ow plasticity,	~PL	VSt VSt to H	2 3 3 2 3 6 6 6 5 5 5 6 7 8 10 15	U50	DCP:-Hammer Bouncing EXTREMELY WEATHERED ROCK
	Rem	- - arks	-												

	Clier Proje ∟oca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation pine NSW		L	roject No ogged B checked	y C	P3229 OP OP
_ '		plete	ed E	avati Exca		10.7.23 Northing 6410571.00 Slope on 10.7.23 Easting 734060.00 Bearing MATERIAL DESCRIPTION	90	0°	Eq. Gro	uipment ound Lev	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	untered	_			SC	TOPSOIL: Clayey SAND: fine to medium grained, grey	D	L	2		TOPSOIL
	Not Encountered	-	_		CL- CI	Sandy CLAY: low to medium plasticity, yellow and grey, fine to medium grained sand		F	1		RESIDUAL SOIL
		- -	-				<pl< td=""><td>VSt to H</td><td>5 10 15</td><td></td><td>DCP:-Hammer Bouncing</td></pl<>	VSt to H	5 10 15		DCP:-Hammer Bouncing
ш		-			SC	Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, yellow and grey					EXTREMELY WEATHERED ROCK
	4	- - 36	1				D	D to VD			
		-	_								
	4		2			Test Pit TP08-L Terminated at 1.30 m					Refusal on bedrock
	Rem	arks	 ;:								

1	Clier Proje	ect		Pre	elimi	nary Geotech	nd Construction				L	roject No	y C	P3229 PP
	Loca	tion		Ga	laml	bine NSW					С	hecked I	Ву С)P
				avati		12.7.23	Northing	6410592.00	Slope		0°		uipment	
-				_	vatio	on 12.7.23	Easting	734127.00	Bearing		-		ound Lev	
EX	(CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, ither components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	tered			W.W.	sc	TOPSOIL: Cla	yey SAND: fine to	medium grained, grey		D	MD	2		TOPSOIL
	Not Encountered	-	_		CI- CH	Sandy CLAY: r sand	medium to high pl	asticity, yellow, fine to m	nedium grained	<pl< td=""><td>F</td><td>2 7</td><td></td><td>RESIDUAL SOIL</td></pl<>	F	2 7		RESIDUAL SOIL
ш		- - -	_		CI- CH	Extremely wea	thered Sandstone yellow, fine to coa	recovered as Sandy C arse grained sand	LAY, medium to		VSt to H	11 13 14 15		EXTREMELY WEATHERED ROCK
	4	- 38 - -	1							< <pl< td=""><td></td><td></td><td>D</td><td></td></pl<>			D	
			2			Test Pit TP09-	L Terminated at 1	.30 m						Refusal on bedrock
ı	Rem	arks	;:											

Test Pit No: TP01-P

Engineering Log - Test Pit

	Clier Proje						d Construction					roject No		P3229 P
	Loca	tion		Ga	lam	bine NSW					С	hecked I	Зу О	P .
				avati –		10.7.23	Northing	6411174.00	Slope		0°		uipment	
				1	vati	on 10.7.23	Easting	734222.00	Bearing		-		und Lev	
EX	CA\	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: pl	ption of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	_		W.W.	CL- CI	TOPSOIL: San medium graine		nedium plasticity, dark brown	n, fine to		F to	2		TOPSOIL
	NotEn	-	_		CL- CI	Sandy CLAY: I	ow to medium pla	sticity, brown		<pl< td=""><td>St</td><td>2 4 11 10 11 7</td><td></td><td>RESIDUAL SOIL</td></pl<>	St	2 4 11 10 11 7		RESIDUAL SOIL
ш	4	- 34 - -	1		CI- CH	Silty CLAY: me	dium to high plast	ticity, pale brown and yellow		< <pl< td=""><td>VSt and H</td><td>8</td><td>В</td><td></td></pl<>	VSt and H	8	В	
		-			SC	Extremely wea coarse grained	thered Sandstone , grey and brown	recovered as Clayey SAND with pebbles and cobbles	, fine to	D	D to VD	5		EXTREMELY WEATHERED ROCK DCP:-5/5mm Hammer Bouncing
			2			Test Pit TP01-I	P Terminated at 1	.90 m						Target depth
	⊥ Rem	arks	l ;:											

Test Pit No: TP02-P

Engineering Log - Test Pit

1	Clien Proje Loca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation oine NSW			L	roject No ogged B checked	y O	P3229 PP PP
(Start Com	ed l	Exca	avati	on	10.7.23 Northing 64110 on 10.7.23 Easting 73420	5.00 Bearing		0°	Eq. Gro	uipment ound Lev	Komatsu 13T vel 437 AHD
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of (soil type: plasticity/g	Soil grainsize,	Moisture Condition	Consistency	Tests DCP Results (blows/100mm)	Samples	MPLING & OTHER INFORMATION Additional Comments (material origin, pocket penetrometer values, investigation observations)
ш	Not Encountered	36	1		CL-C C-C C-C C-C C-C C-C C-C C-C C-C C-C	TOPSOIL: Sandy CLAY: low to medium pla grained sand, with fragments of Sandstone Sandy CLAY: medium to high plasticity, pa grained sand Extremely weathered Sandstone recovered coarse grained, pale brown and grey Test Pit TP02-P Terminated at 1.00 m	(50mm-100mm) le brown, fine to medium	<pl d<="" td=""><td>St to VSt VSt to H D to VD</td><td>3 3 4 7 12 25</td><td>В</td><td>RESIDUAL SOIL EXTREMELY WEATHERED ROCK Refusal on bedrock</td></pl>	St to VSt VSt to H D to VD	3 3 4 7 12 25	В	RESIDUAL SOIL EXTREMELY WEATHERED ROCK Refusal on bedrock
ı	4 Rem	34 - - - - - arks	3									

Test Pit No: TP03-P

Engineering Log - Test Pit

	Clier Proje					-	nd Construction					roject No		P3229 P
1		tion				bine NSW	J					hecked I)P
5	Start	ed	Exc	avati	on	10.7.23	Northing	6411013.00	Slope	90	0°	Equ	ipment	Komatsu 13T
(Com	plete	ed	Exca	vatio	on 10.7.23	Easting	734122.00	Bearing		-	Gro	und Lev	vel 434 AHD
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, ither components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	tered			W.W.	CL- CI	TOPSOIL: San grained sand	ndy CLAY: low to r	medium plasticity, browr	n, fine to medium	<pl< td=""><td></td><td>2</td><td></td><td>TOPSOIL</td></pl<>		2		TOPSOIL
	Not Encountered	-	_		CI- CH		edium to high plas	ticity, brown		~PL	F to St	3 4 9		RESIDUAL SOIL DCP:-9/5mm Hammer Bouncing
Ш		_	_		sc	Extremely wea	thered Sandstone	recovered as Clayey S	AND, fine to					EXTREMELY WEATHERED ROCK
		-	- - -			coarse grained	, grey and brown			D	D to VD		В	
	4	33	1			Test Pit TP03-I	P Terminated at 0	.90 m						Refusal on bedrock
F	Rem	arks	:											

Geotechnical Investigation

Test Pit No: TP04-P

Engineering Log - Test Pit

	Clier Proje Loca	ect		Pre	elimii	ngineering and Construction Pty Ltd nary Geotechnical Investigation oine NSW		L	roject No ogged B Checked	у О	
	Start	ed plete	Exca	avati	on	10.7.23 Northing 6410984.00 Slope on 10.7.23 Easting 734269.00 Bearing MATERIAL DESCRIPTION		0°	Eq. Gro	uipment ound Lev	Komatsu 13T
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	səldu	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Intered	_		WW	CL- CI	TOPSOIL: Sandy CLAY: low to medium plasticity, brown, fine to medium grained sand	<pl< td=""><td></td><td>3</td><td></td><td>TOPSOIL</td></pl<>		3		TOPSOIL
	Not Encountered	-	_		CI- CH	Silty CLAY: medium to high plasticity, brown	~PL	St to VSt			RESIDUAL SOIL
	z	-	_		CI- CH	Extremely weathered Shale recovered as Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse grained sand			7		EXTREMELY WEATHERED ROCK
ш		_				, , ,			17		DCP:-17/80mm Hammer Bouncing
		-	_				< <pl< td=""><td>Н</td><td></td><td>В</td><td></td></pl<>	Н		В	
	4	39	-			Test Pit TP04-P Terminated at 0.92 m					Refusal on bedrock
	rkem	агкѕ									

Test Pit No: TP05-P

Engineering Log - Test Pit

	Clien Proje						d Construction					roject No		P3229 P
	_oca					bine NSW						hecked I)P
5	Start	ed I	Exc	avati	on	10.7.23	Northing	6410977.00	Slope	90	0°	Equ	ipment	Komatsu 13T
(Com	plete	ed I	Exca	vatio	on 10.7.23	Easting	734183.00	Bearing		-	Gro	und Lev	vel 436 AHD
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, ither components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			W.W.	CL- CI	TOPSOIL: San	dy CLAY: low to r	medium plasticity, brown	, fine to medium	<pl< td=""><td></td><td>4</td><td></td><td>TOPSOIL</td></pl<>		4		TOPSOIL
	Not Encountered	1 1	-		CI- CH		dium to high plas	ticity, brown		~PL	St to VSt	3 4 5		RESIDUAL SOIL
Ш			-		SC	Extremely wear coarse grained	thered Sandstone , grey and brown	recovered as Clayey S.	AND, fine to	D	D to VD	25	В	EXTREMELY WEATHERED ROCK DCP:-Hammer Bouncing
	4	35	11			Test Pit TP05-F	P Terminated at 1	.00 m						Refusal on bedrock
F	Rem	arks	:	•							•			

Test Pit No: TP06-P

Engineering Log - Test Pit

Started Exeavation 10.7.23 Southing 0410874.00 Slope 90" Equipment Komatsu 13T Completed Exeavation 10.7.23 Easting 74211.00 Slope 90" Equipment Komatsu 13T	Client CAM Engineering and Construction Pty Ltd Project No. EP3229 Project Preliminary Geotechnical Investigation Logged By OP											
EXCAVATION MATERIAL DESCRIPTION TESTING, SAMPLING & AND LINE (AND LINE IN PROPERTY) Poly of the property of												
EXCAVATION MATERIAL DESCRIPTION TESTING, SAMPLING & OTHER INFORMATION Description of Soil (soil type: plasticity (granistize, colour and other components)) Tests by the state of the colour and other components by the colou	Started Excavation	10.7.23 Northing 6410874.00 S	pe 90° Equipment Kom	natsu 13T								
Description of Soil (soil type: plasticity/grainsize, colour and other components) By B	Completed Excavation	on 10.7.23 Easting 734211.00 E	aring Ground Level 437	AHD								
Description of Soil (soil type: plasticity) grainsize, colour and other components) Page	EXCAVATION	MATERIAL DESCRIPTION	TESTING, SAMPLING &	OTHER INFORMATION								
Test Pit TP06-P Terminated at 1.00 m. Ass 2 2 3 3	Method Water RL (m) Depth (m) Graphic Log Classification	(soil type: plasticity/grainsize,	중 Tosts origin, po	cket penetrometer values,								
CI- Extremely weathered Shale recovered as Silty Sandy CLAY, medium to high plasticity, fine to course grained sand, grey and brown CPL H B EXTREMELY WEATHERED ROCK DCP-12/Somm Hammer Bouncing Test Pit TP08-P Terminated at 1.00 m Test Pit TP08-P Terminated at 1.00 m Refusal on bedrock	B CL-		dium _{<pl< sub=""> 1 TOPSOIL</pl<>}									
U high plasticity, fine to coarse grained sand, grey and brown 12 DCP-12/50mm Hammer Bouncing 13 S 2 S 3 S 2 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5	Not Encount CH	<u> </u>	F to St 2	SOIL								
12 DCP-12:50mm Hammer Bouncing Sept. H B Refusal on bedrock		Extremely weathered Shale recovered as Silty Sandy CLAY, med	m to 13 EXTREMEL	Y WEATHERED ROCK								
Refusal on bedrock	ш + СН	high plasticity, fine to coarse grained sand, grey and brown		mm Hammer Bouncing								
434 3	436											
Remarks:	435 2	Test Pit TP06-P Terminated at 1.00 m	Refusal on b	pedrock								
	remarks.	Remarks:										

Test Pit No: TP07-P

Engineering Log - Test Pit

Client CAM Engineering and Construction Pty Ltd Project No. EP3229 Project Preliminary Geotechnical Investigation Logged By OP														
l	_oca	tion		Ga	lamb	bine NSW					С	hecked I	Ву О	P .
1				cavati		11.7.23	Northing	6410843.00	Slope	90	0°		uipment	
				_	vatio	on 11.7.23	Easting	734049.00	Bearing		-		ound Lev	
EX	EXCAVATION MATERIAL DESCRIPTION											TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			WW	sc	TOPSOIL: Clay	ey SAND: fine to	medium grained, grey		D	L	1		TOPSOIL
ш	. 4	32	1		CL-CC CI-CCH	Sandy CLAY: n sand	ow to medium pla	sticity, grey, fine to coars asticity, yellow, fine to coa		<pre><pl< pre=""></pl<></pre>	F St to VSt	1	В	RESIDUAL SOIL Target depth
I	Rem	-	_											

Geotechnical Investigation

Test Pit No: TP08-P

Engineering Log - Test Pit

F	Proje	Client CAM Engineering and Construction Pty Ltd Project No. Project Preliminary Geotechnical Investigation Logged By Ocation Galambine NSW Checked By											y C	P3229 DP DP
				avati Exca		10.7.23 on 10.7.23				90			uipment ound Lev	
EX	EXCAVATION MATERIAL DESCRIPTION											TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		Descrip (soil type: pla colour and ot		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)	
	Not Encountered	-	-		CL- CI	TOPSOIL: Silty	CLAY: low to med	dium plasticity, grey		~PL	F	2		TOPSOIL
ш	4	33	- - - - - - - - - - - - - - - - - - -		CI-CH	2.40m: @2.4m (100mm-150mm	with fragments of n)	Sandstone, brown and ye	ellow	◆PL	St and VSt	2 7 7 6 5 5 4 3 4 4 5 6 6 7 7	В	Target depth
F	Rem	arks	:											

Test Pit No: TP09-P

Engineering Log - Test Pit

	Project Preliminary Geotechnical Investigation L												Project No. EP3229 Logged By OP				
	Loc	ation		Ga	alan	nbi	ne NSW					C	hecked	Ву С)P		
				avat			10.7.23	Northing	6410739.00	Slope		90° Equipment Komatsu 13T					
													1	ound Lev			
E	EXCAVATION MATERIAL DESCRIPTION												TEST	NG, SA	MPLING & OTHER INFORMATION		
Method	Water	RL (m)	Depth (m)		Classification			(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)		
	ountered		-	WW	sc		TOPSOIL: Clay	rey SAND: fine to	medium grained, brown		М	L	1		TOPSOIL		
ш	Not Encountered	438	1		CI-CH	- - -	Extremely weat plasticity, grey		ecovered as Silty CLAY, med		~PL	St to VSt	1 3 6 8 9 8 10 9 9 8 10 10	В	EXTREMELY WEATHERED ROCK Target depth		
	Ren	436 _	3														

Test Pit No: TP10-P

Engineering Log - Test Pit

Client CAM Engineering and Construction Pty Ltd Project No. EP3229 Project Preliminary Geotechnical Investigation Logged By OP																
1	.oca					bine NSW	· ·					hecked I)P		
1				avati		12.7.23	Northing	6410729.00	Slope		90° Equipment Komatsu 13T					
				_	vatio	on 12.7.23	Easting	733953.00	Bearing		-	Gro	und Lev	vel 433 AHD		
EX	EXCAVATION MATERIAL DESCRIPTION											TESTI	NG, SA	MPLING & OTHER INFORMATION		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, ither components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)		
	Not Encountered	-	_	W.W.	CL- CI	TOPSOIL: San medium graine		nedium plasticity, dark t	orown, fine to	<pl< td=""><td></td><td>2</td><td></td><td>TOPSOIL</td></pl<>		2		TOPSOIL		
	Not Enc	-	_		CI- CH	Silty CLAY: me grained sand	dium to high plas	ticity, dark red, with fine	to medium	~PL	F to St	4 5		RESIDUAL SOIL		
ш		_	_		sc	Extremely weat coarse grained	thered Sandstone , yellow and red	recovered as Clayey S	AND, fine to			20		EXTREMELY WEATHERED ROCK DCP:-Hammer Bouncing		
		-	-							D	VD		В			
	4	32	11			Test Pit TP10-F	P Terminated at 0	.90 m						Refusal on bedrock		
F	Rem	arks	:	•												

Test Pit No: TP11-P

Engineering Log - Test Pit

Project Preliminary Geotechnical Investigation Lo											Project No. EP3229 Logged By OP			
	Loca					bine NSW	_					hecked I)P
				avati		12.7.23	Northing	6410630.00	Slope	9	0°		uipment	
	Com	plet	ed	Exca	vatio	on 12.7.23	Easting	734170.00	Bearing		-	Gro	und Lev	vel 439 AHD
EX	EXCAVATION MATERIAL DESCRIPTION											TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			WW	CL- CI	TOPSOIL: San grained sand	dy CLAY: low to r	medium plasticity, browi	n, fine to medium	<pl< td=""><td></td><td>2</td><td></td><td>TOPSOIL</td></pl<>		2		TOPSOIL
ш			1		5 성공	Sandy CLAY: n grained sand, v (30mm-50mm)	nedium to high pli vith pebbles and f	asticity, yellow and red, asticity, yellow and red, erruginous cementation		~PL	St to VSt VSt to H	1 2 4 3 4 6 5 8 9 20	В	RESIDUAL SOIL
	Rem	- - - - - - - - - - - -												

Test Pit No: TP12-P

Engineering Log - Test Pit

	Clien Proje						nd Construction					roject No		P3229 P
	oca			Ga	laml	bine NSW						hecked l)P
				avati		12.7.23	Northing	6410596.00	Slope	90	0°		uipment	
(Com	plete	ed	Exca	vatio	on 12.7.23	Easting	734024.00	Bearing		-	Gro	ound Lev	vel 436 AHD
EX	CAV	ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			WW	CL- CI	TOPSOIL: San grained sand	dy CLAY: low to r	medium plasticity, grey,	fine to medium			2		TOPSOIL
	Not Encountered		- - -		CI- CH		nedium to high pl	asticity, yellow, fine to m	edium grained	<pl< td=""><td>F to St</td><td>2 2 2 5</td><td></td><td>RESIDUAL SOIL</td></pl<>	F to St	2 2 2 5		RESIDUAL SOIL
ш			- - - 1 - - - - - -		CI-CH	Extremely weahigh plasticity,	thered Sandstone yellow with ferrug	recovered as Sandy Cl ious cementations (30m			H anc VSt	14 10 8 4 5 5 6 5 6	В	EXTREMELY WEATHERED ROCK
			- - - - - - - -			Test Pit TP12-f	P Terminated at 2	.10 m						Target depth
ı	Rem	arks	:	'										

Test Pit No: TP13-P

Engineering Log - Test Pit

	Clier Proje						nd Construction					roject No		P3229 P
	Loca					bine NSW	3					hecked I)P
;	Start	ed	Exc	avati	on	12.7.23	Northing	6410446.00	Slope	90	0°	Equ	ipment	Komatsu 13T
(Com	plet	ed	Exca	vati	on 12.7.23	Easting	734092.00	Bearing		-	Gro	und Lev	vel 439 AHD
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: pl	ption of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			WWA	CL- CI	TOPSOIL: San grained sand	dy CLAY: low to r	nedium plasticity, grey, f	ine to medium			1		TOPSOIL
	Not Encountered	-	-		CI- CH	-	nedium to high pla	asticity, brown, fine to me	edium grained	<pl< td=""><td>F</td><td>1 2 1 2 3</td><td>В</td><td>RESIDUAL SOIL</td></pl<>	F	1 2 1 2 3	В	RESIDUAL SOIL
		-									St to VSt	7		
Ш		-	-		CI-	Enter	thorad C ' '	recovered C C'	AV		voi	14		EXTREMELY WEATHERED ROCK
		-	_		CH	high plasticity,	yellow and red, fir	recovered as Sandy CL te to coarse grained sand	d medium to			19		DCP:-Hammer Bouncing
		-	_											Bor Hammer Bounding
	4	38	_1							< <pl< td=""><td>н</td><td></td><td></td><td></td></pl<>	н			
		-	_											
		-	_											
		-	-	///		Test Pit TP13-F	P Terminated at 1	.30 m						Target depth
		-	_											
		_												
		-												
		_												
	4	37	_2											
		-	_											
		_	_											
		-												
		-												
		_												
		-	-											
		-	-											
		-	-											
		-	١.											
	4	36	3											
		-												
	Rem	arks	: :											

Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other co		CAM Engineering and Construction Pty Ltd Preliminary Geotechnical Investigation	Project No. EP3229 Logged By OP	
Completed Excavation 11.7.23 Easting 733998.00 Bearing — Ground Level 427 AHD	Location	Galambine NSW	Checked By OP	
EXCAVATION MATERIAL DESCRIPTION Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity) follows: Tests: Tests: DCP, Results: Additional Comme origin, pocket penetricity follows: Tests: DCP, Results: Tests: DCP, Results: Tests: DCP, Results: Tests: Tests: DCP, Results: Tests: DCP, Results: Tests: Tests: DCP, Results: Tests: Tests: Tests: DCP, Results: Tests: Tests: Tests: Tests: DCP, Results: Tests: Tests: Tests: Tests: Tests: Tests: Tests: DCP, Results: Tests: Test				
Description of Soil Color Description of Soil Description of S	Completed Ex	Excavation 11.7.23 Easting 733998.00 Bear	ring Ground Level 427 AHD	
Description of Soil (soil type: plasticity/grainsize, colour and other components) Soil Colour and other components Soil Colour Soil Co	XCAVATION	MATERIAL DESCRIPTION	TESTING, SAMPLING & OTHER INFO	RMATION
Second S	Water RL (m) Depth (m)	Description of Soil (soil type: plasticity/grainsize, colour and other components)	S origin, pocket penetrom	eter values,
CI- Extremely weathered Sandstone recovered as Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse sand with pebbles CI- Extremely weathered Sandstone recovered as Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse sand with pebbles CI- Extremely weathered Sandstone recovered as Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse sand with pebbles CI- Extremely weathered Sandstone recovered as Sandy CLAY, medium to 10 10 10 10 10 10 10 10 10 10 10 10 10	Sountered		<pl 2<="" td=""><td></td></pl>	
CH high plasticity, brown and grey, fine to coarse sand with pebbles CH New York 16		CI-CH Sitty CLAY: medium to high plasticity, yellow and red, with fine to medium grained sand	St 3 RESIDUAL SOIL APL 4 B U50	
4252	426 1	CI- CH Extremely weathered Sandstone recovered as Sandy CLAY, medium high plasticity, brown and grey, fine to coarse sand with pebbles	16 DCP:-Hammer Bouncing	ROCK
	- - - - - - -		Target depth	
Remarks:	Remarks:			

	Clier Proje						nd Construction					roject No		P3229 P
	Loca			Ga	lamb	bine NSW						hecked I)P
				avati		11.7.23	Northing	6411362.00	Slope	90	0°		uipment	
	Com	plet	ed I	Exca	vatio	on 11.7.23	Easting	734100.00	Bearing		-	Gro	ound Lev	vel 430 AHD
EX	(CA)	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	iption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	-	_		SC	TOPSOIL: Clay	ey SAND: fine to	medium grained, brown		D	L to MD	2		TOPSOIL
Ш	Not Enc	- - -			CI- CH	Silty CLAY: me medium graine	dium to high plas d sand	ticity, brown and dark red	d, with fine to	~PL	F to St	2 3 4	В	RESIDUAL SOIL
	4	- - - 129	- - - - 1		CI- CH	Extremely wea high plasticity,	thered Sandstone grey and brown, f	e recovered as Sandy CL îne to coarse grained sar	AY, medium to nd with pebbles	<pl< td=""><td>VSt to H</td><td>12</td><td></td><td>EXTREMELY WEATHERED ROCK</td></pl<>	VSt to H	12		EXTREMELY WEATHERED ROCK
						Test Pit TPNW	02-L Terminated	at 1.15 m						Refusal on bedrock
	⊥ Rem	arks	L 5:	1							I			

Test Pit No: TPNW03-L

Engineering Log - Test Pit

	Clien Proje Loca	ect		Pre	limi	ngineering and Construction Pty Ltd nary Geotechnical Investigation pine NSW		L	roject No ogged B	у О	P3229 0P 0P
_ '	Start Com	plete	ed E			11.7.23 Northing 6411281.00 Slope on 11.7.23 Easting 734114.00 Bearing MATERIAL DESCRIPTION	91	0° -	Gro	uipment ound Lev	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	_		WW)	SC	TOPSOIL: Clayey SAND: fine to coarse grained, dark brown, with fine to medium grained, subangular gravel	D	L	1		TOPSOIL
ш	Not Enc	- -	<u>-</u> -		CI- CH	Sandy CLAY: medium to high plasticity, dark brown and red, fine to coarse grained sand	~PL	F	6 10		RESIDUAL SOIL
		-	_		CI- CH	Extremely weathered Sandstone recovered as Sandy CLAY, medium to high plasticity, brown and grey, fine to coarse grained sand	<pl< td=""><td>VSt to H</td><td>12 20</td><td></td><td>EXTREMELY WEATHERED ROCK</td></pl<>	VSt to H	12 20		EXTREMELY WEATHERED ROCK
	4	29	- - -			Test Pit TPNW03-L Terminated at 0.90 m					Target depth
	kem	arKS	٠.								

Test Pit No: TPNW01-P

Engineering Log - Test Pit

F	Clien Proje Loca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation oine NSW		L	roject No ogged By hecked I	y C	P3229 DP DP
				avati Exca		11.7.23 Northing 6411344.00 Slope on 11.7.23 Easting 733954.00 Bearing	90	0° -		uipment ound Le	
EX	CAV	'ATI	ON			MATERIAL DESCRIPTION			TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered			WW	sc	TOPSOIL: Clayey SAND: fine to medium grained, grey	М	L	1		TOPSOIL
	Not Encountered				CL- CI	Sandy CLAY: low to medium plasticity, brown, fine to coarse grained sand	>PL	F	2		RESIDUAL SOIL
	Z	-	-				~PL		6		
		-			ML	Extremely weathered Siltstone recovered as Clayey SILT, low plasticity, grey and brown with cobbles and pebbles			21		EXTREMELY WEATHERED ROCK
ш	4	- - 26	- - -				<pl< td=""><td>VSt to H</td><td></td><td>В</td><td></td></pl<>	VSt to H		В	
		-	_		SC	Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, grey and brown					
		-	_				D	D to VD			
			2			Test Pit TPNW01-P Terminated at 1.60 m					Refusal on bedrock
F	Rem	arks	L ;:					l			

Test Pit No: TPNW02-P

Engineering Log - Test Pit

F	Clier Proje	ect		Pre	elimi	ingineering and Construction Pty Ltd nary Geotechnical Investigation		L	roject No	y O	P3229 P
l	Loca	ition		Ga	laml	bine NSW		С	hecked I	Ву О)P
				avati		11.7.23 Northing 6411331.00 Slope		0°		uipment	
-		_			vaud	on 11.7.23 Easting 734050.00 Bearing		-	1	und Le	
EX	CA\	/AII	ON			MATERIAL DESCRIPTION			IESII	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	itered	_		X (X)	CL- CI	TOPSOIL: Sandy CLAY: low to medium plasticity, brown, fine to medium grained sand	<pl< td=""><td>F</td><td>2</td><td></td><td>TOPSOIL</td></pl<>	F	2		TOPSOIL
	Not Encountered	_			sc	Clayey SAND: fine to medium grained, grey	D	MD	2		RESIDUAL SOIL
	Not	=			CI- CH	Sandy CLAY: medium to high plasticity, yellow, fine to coarse grained sand		St to VSt	8		
		_	L				<pl< td=""><td></td><td>9</td><td>В</td><td></td></pl<>		9	В	
		-	_					н	11		
		-			sc	Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, grey and brown with cobbles and pebbles			17		EXTREMELY WEATHERED ROCK
ш	4	28	1								
		_									
		_	ļ								
		-	-				D	D to VD			
		-	ļ								
		_	_								
		-	-								
		-	-								
		-	-								
		-	-	<u> </u>		Test Pit TPNW02-P Terminated at 1.90 m					Refusal on bedrock
	4	27	2								
		-	ŀ								
		-	İ								
		-	Ī								
		_									
		_									
		_									
		_									
	4	26	3								
		-	-								
		-	-								
		-	-								
		-	+								
-	L Rem	l arks	L s:								

Test Pit No: TPNW03-P

Engineering Log - Test Pit

Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other components) Description of Soil (soil type: plasticity/grainsize, colour and other co		P3229	EP32 OP			roject N				I	and Construction Pty Ltd hnical Investigation						Clien Proje	
EXCAVATION MATERIAL DESCRIPTION TESTING, SAMPLING & OTHER IN IN TITUTE OF SAMPLING & OTHER IN IN TESTING, SAMPLING & OTHER IN TESTING, SAMPLING & OTHER IN IN TESTING, SAMPLING & OTHER IN INSTITUTE OF SAMPLING & OTH		>	OP	Ву	d B	hecked	С					bine NSW	lamb	Gal	(ion	.oca	I
EXCAVATION MATERIAL DESCRIPTION TESTING, SAMPLING & OTHER IN Additional Commercing of Soil (soil type: plasticity/grainsize, colour and other components) Page 1				•	•						<u>-</u>							
Description of Soil (soil type: plasticity/grainsize, colour and other components) Page	INICODIAATION						•		g				vatic	ca				
Description of Soil (soil type: plasticity/grainstze, colour and other components) Part	INFORMATION	JPLING & OTHER INFO	, SAMP	NG, S		IES			T	RIPTION	MATERIAL DESCRIPTION			1	N	ATIO	CAV	EX
SP SAND. Time to medium grained, grey, with day CL. Sandy CLAY: low to medium plasticity, yellow and brown, fine to coarse grained sand CL Sandy CLAY: low to medium plasticity, yellow and brown, fine to coarse grained sand CL Extremely weatherd Sandatone recovered as Sandy CLAY, medium to high plasticity, dark ned and brown Test Pit TPNW03-P Terminated at 2.10 in Target depth Target depth	etrometer values,	Additional Comments origin, pocket penetrom investigation observ	or	Samples	ts s/	DCP Result (blows	Consistency	Moisture Condition	A 0.04.00	grainsize,	(soil type: plasticity/grainsi	(s cc	Classification	Graphic Log	Depth (m)	RL (m)	Water	Method
CL Sandy CLAY: low to medium plasticity, yellow and brown, fine to coarse of grained sand clay many clay, medium to coarse of the plasticity, dark red and brown CL Extremely weatherd Sandstone recovered as Sandy CLAY, medium to clay the plasticity, dark red and brown B EXTREMELY WEATHERE A STATEMENT WEATHERE B Target depth Test Pit TPNW03-P Terminated at 2.10 m Target depth													_	<u> </u>	W/ 		tered	
CL- Sandy CLAY: low to medium plasticity, yellow and brown, fine to coarse grained sand CL Sandy CLAY: low to medium plasticity, yellow and brown, fine to coarse grained sand CL Extremely weatherd Sandstone recovered as Sandy CLAY, medium to high plasticity, dark red and brown STREMELY WEATHERE 433 — 1 Test Pit TPNW03-P Terminated at 2.10 m Target depth		RESIDUAL SOIL	RE			4	MD	D		clay	nedium grained, grey, with clay	SAND: fine to medi	SP			-	Not Encount	
CH high plasticity, dark red and brown 8 VSI to H Target depth Target depth						9		<pl< td=""><td></td><td>low and brown, fine to coars</td><td>low to medium plasticity, yellow and</td><td>Sandy CLAY: low to grained sand</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td></pl<>		low and brown, fine to coars	low to medium plasticity, yellow and	Sandy CLAY: low to grained sand			-	-		
433 — 1	RED ROCK	EXTREMELY WEATHERED F				17				as Sandy CLAY, medium to	atherd Sandstone recovered as Sand r, dark red and brown	Extremely weatherd high plasticity, dark				+		
432 2 Test Pit TPNW03-P Terminated at 2.10 m Target depth			3	В											_1	33	4	
432 2 Test Pit TPNW03-P Terminated at 2.10 m Target depth							VSt									+		Ш
Test Pit TPNW03-P Terminated at 2.10 m Target depth							to H	<pl< td=""><td><</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>	<							-		
Test Pit TPNW03-P Terminated at 2.10 m Target depth															-	-		
Test Pit TPNW03-P Terminated at 2.10 m Target depth																		
4313															_2	32_	4	
		Target depth	Tar								W03-P Terminated at 2.10 m	Test Pit TPNW03-P						
															-	-		
																+		
Remarks:															_3	31	4	
Remarks:																-		
																arks	Rem	-

P	Clier Proje			Pre	elimi		d Construction				L	roject No ogged B	y C	P3229 PP PP
S	Star	ed l	ed I	avati	on	10.7.23 on 10.7.23	Northing Easting MATERIA	6410803.00 734334.00 L DESCRIPTION	Slope Bearing	9	0°	Equ Gro	uipment ound Lev	Komatsu 13T
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
Э	Not Encountered	42			ML ML	Extremely weat grey and brown	thered Siltstone re	medium grained, dark brown ticity, pale brown and yellow ecovered as Clayey SILT, low		D to M	L F	2 1 2 6 5 6 4 4 4 5 6 6 6 6 6 6 10 10 10 11 10 12 12	D	TOPSOIL RESIDUAL SOIL EXTREMELY WEATHERED ROCK
F	Rem	arks	:			Test Pit TP01-\	WS Terminated at	3.50 m						Target depth

	Clier Proje Loca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation bine NSW		L	roject No ogged B	у С	P3229 OP OP
	Start	ed l	ed E	avati	on	12.7.23 Northing 6410450.00 Slope on 12.7.23 Easting 734285.00 Bearing MATERIAL DESCRIPTION	91	0°	Eq. Gro	uipment ound Lev	Komatsu 13T
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil	Moisture Condition	Consistency	Tests DCP Results (blows/100mm)	səldu	Additional Comments (material origin, pocket penetrometer values, investigation observations)
3	Not Encountered A	42			0 년 0 년 5 년 5 년 5 년 5 년 5 년 5 년 5 년 5 년	TOPSOIL: Sandy CLAY: low to medium plasticity, grey, fine to medium grained sand Sandy CLAY: medium to high plasticity, yellow, fine to medium grained sand Extremely weathered Sandstone recovered as Sandy CLAY, medium to high plasticity, yellow, fine to coarse grained sand Extremely weathered Siltstone recovered as Clayey Sandy SILT, high plasticity, grey, fine to coarse grained sand	<pl <<pl<="" td=""><td>F to St</td><td>1 2 2 3 6 13 25</td><td>В</td><td>TOPSOIL RESIDUAL SOIL EXTREMELY WEATHERED ROCK Target depth</td></pl>	F to St	1 2 2 3 6 13 25	В	TOPSOIL RESIDUAL SOIL EXTREMELY WEATHERED ROCK Target depth
	Rem	- arks	-								

Test Pit No: TPGRNB

Engineering Log - Test Pit

1	Clier Proje Loca	ect		Pre	elimii	ngineering and Construction Pty Ltd nary Geotechnical Investigation bine NSW			L	roject No ogged By	y O	P3229 0P 0P
(plete	ed E	avati Exca		11.7.23 Northing 6410447.00 Slop on 11.7.23 Easting 733964.00 Bea MATERIAL DESCRIPTION	pe aring	90)°	Equ Gro	uipment ound Lev	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
M SS	Not Encountered	334	1		GP SC	Road Seal: fine to coarse grained, sub-angular to angular, black Sandy GRAVEL: fine to coarse grained, sub-angular to angular, pale brown, fine to coarse grained sand Extremely weathered Sandstone recovered as Clayey SAND, fine to coarse grained, dark brown Test Pit TPGRNB Terminated at 1.50 m	•		D to VD	5 ·	S B	EXTREMELY WEATHERED ROCK DCP:-5/5mm Hammer Bouncing Target depth
I	Rem	arks	<u> </u> 5:									

Test Pit No: TPGRSB

Engineering Log - Test Pit

F	Clier Proje	ect		Pre	elimi	nary Geotech	nd Construction				L	roject No	y C	FP3229 OP
L	_oca	tion		Ga	lamb	bine NSW					С	hecked I	Ву С)P
				avati		11.7.23	Northing	6410442.00	Slope		0°		uipment	
-					vatio	on 11.7.23	Easting	733971.00	Bearing		-		ound Lev	
EX	CAV	/ATI	ON				MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil lasticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	ered							d, sub-angular to angular						PAVEMENT
	Not Encountered	- - -	-		GP	fine to coarse o	grained sand	grained, sub-angular to an				2		EVEDENCE V WEATHERED DOOR
AS	4	- - - - 134	- - - 1		SC	Extremely wea coarse grained	thered Sandstone , dark brown	recovered as Clayey SA	ND, fine to	D	D to VD	2		EXTREMELY WEATHERED ROCK DCP:-2/5mm Hammer Bouncing
		- - -	-			Test Pit TPGR:	SB Terminated at	1.50 m					В	Target depth
	4	33	3			Test Pit TPGR	SB Terminated at	1.50 m						Target depth
F	Rem	arks	 ::											

F	Clien Proje Loca	ect		Pre	elimii	Ingineering and Construction Pty Ltd nary Geotechnical Investigation bine NSW		L	Project No ogged By Checked I	у С	P3229 DP DP
				avati Exca		11.7.23 Northing 6410440.00 Slope on 11.7.23 Easting 733975.00 Bearing	91	0° -		ipment und Le	
EX	CAV	/ATI	ON			MATERIAL DESCRIPTION			TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	-			GP SC	Road Seal: fine to coarse grained, sub-angular to angular, black Sandy GRAVEL: fine to coarse grained, sub-angular to angular, brown, fine to coarse grained sand Extremely weathered Sandstone recovered as Clayey SAND, fine to					PAVEMENT EXTREMELY WEATHERED ROCK
AS	4	- - - 34	1			coarse grained, dark brown	D	D to			EATREMELT WEATHERED ROOK
		- - -	-			Test Pit TPGRSB Shoulder Terminated at 1.50 m		VD		В	Target depth
	4	- - 33 - -	2								
	4	- - - - 32 _ - -	3								
F	Rem	arks	 s:								

F	Clien Proje Loca	ect		Pre	elimi	ngineering and Construction Pty Ltd nary Geotechnical Investigation oine NSW		L	Project No ogged By Checked E	, C	P3229 P P
				avati Exca		11.7.23 Northing 6411400.00 Slope on 11.7.23 Easting 734232.00 Bearing	91	0° -		ipment und Lev	
EX	CAV	ΆΤΙ	ON			MATERIAL DESCRIPTION			TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification	Description of Soil (soil type: plasticity/grainsize, colour and other components)	Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
AS	Not Encountered	33	3		SC CI-CH	Road Seal: fine to coarse grained, sub-rounded to sub-angular, black Sandy GRAVEL: fine to coarse grained, sub-angular to angular, yellow, fine to coarse grained sand Clayey SAND: fine to coarse grained, dark brown, (crushed Sandstone) Sandy CLAY: medium to high plasticity, brown, fine to coarse grained sand Test Pit TPMLEB Terminated at 1.50 m	D <pl< td=""><td>D to VD</td><td>3 6 25</td><td>В</td><td>RESIDUAL SOIL Target depth</td></pl<>	D to VD	3 6 25	В	RESIDUAL SOIL Target depth
F	Rem	arks	: :								

	Clien Proje Loca	ect		Pre	elimi	-	nd Construction				L	roject No ogged By	y C	P3229 OP OP
			Eyr	avati		11.7.23	Northing	6411395.00	Slope	Q/	0°		ipment	
						on 11.7.23	Easting	734231.00	Bearing				und Lev	
_	CAV						MATERIA	L DESCRIPTION				TESTI	NG, SA	MPLING & OTHER INFORMATION
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification		(soil type: p	ption of Soil asticity/grainsize, ther components)		Moisture Condition	Consistency	Tests DCP Results (blows/ 100mm)	Samples	Additional Comments (material origin, pocket penetrometer values, investigation observations)
	Not Encountered	-	-		GP		L: fine to coarse o	d, sub-angular to angular, b grained, sub-angular to angu		D	D to VD			PAVEMENT
		-	- -		CL- CI	Sandy CLAY: lo coarse grained	ow to medium pla sand, (with chips	sticity, dark brown and red, of Siltstone and Sandstone	fine to)			6 25		RESIDUAL SOIL
AS	4	- - 333 - -	- - - 1 - -		CL- CI	Sandy CLAY: n sand	nedium to high pla	asticity, brown, fine to coars	e grained	<pl< td=""><td>VSt to H</td><td></td><td>В</td><td></td></pl<>	VSt to H		В	
	4	32	- - - - - - 3			Test Pit TPMLv	WB Terminated at	1.50 m						Target depth
	Rem	arks	:							-	-			

Appendix E LABORATORY TEST RESULTS

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Shrink Swell Index Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: SSI:NEWC23S-07816 Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 24/07/2023

Sample Details

Sample ID: NEWC23S-07816

Date Sampled: 10/07/2023 Date Submitted: 14/07/2023 **Date Tested:** 18/07/2023

Project Location: EP3229 Galambine, NSW. Sample Location: TPNW01-L, @0.20 - 0.70, U50

Borehole Number: TPNW01-I Borehole Depth (m): 0.20 - 0.70

Sampling Method: Submitted by client*

Material: Clay Source: On-Site

AS 1289.7.1.1 **Swell Test**

Swell on Saturation (%): -0.2 Moisture Content before (%): 23.6 Moisture Content after (%): Est. Unc. Comp. Strength before (kPa): +600 Est. Unc. Comp. Strength after (kPa):

Shrink Test AS 1289.7.1.1

Shrink on drying (%): Shrinkage Moisture Content (%): 24.2 Est. inert material (%): Crumbling during shrinkage: Nil Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 2.7

Clay, low to medium plasticity, brown. Trace of fine grained gravel.

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Shrink Swell Index Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: SSI:NEWC23S-07810 Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 24/07/2023

Sample Details

Sample ID: NEWC23S-07810

Date Sampled: 10/07/2023 Date Submitted: 14/07/2023 **Date Tested:** 18/07/2023

Project Location: EP3229 Galambine, NSW. Sample Location: TP04-L, @0.30 - 0.80, U50

Borehole Number: TP04-L Borehole Depth (m): 0.30 - 0.80 Sampling Method: Submitted by client*

Material: Clay Source: On-Site

AS 1289.7.1.1 **Swell Test**

Swell on Saturation (%): -1.1 Moisture Content before (%): 14.5 Moisture Content after (%): Est. Unc. Comp. Strength before (kPa): 130 Est. Unc. Comp. Strength after (kPa):

Shrink Test AS 1289.7.1.1

Shrink on drying (%): 2.0 Shrinkage Moisture Content (%): 14.9 Est. inert material (%): Crumbling during shrinkage: Nil Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 1.1

Comments

Silty Clay, low to medium plasticity, brown.

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Shrink Swell Index Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: SSI:NEWC23S-07812

Issue No: 1

NATA

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 24/07/2023

Sample Details

Sample ID: NEWC23S-07812

Date Sampled: 10/07/2023 Date Submitted: 14/07/2023 **Date Tested:** 18/07/2023

Project Location: EP3229 Galambine, NSW. Sample Location: TP07-L. @0.50 - 1.00

Borehole Number: TP07-L Borehole Depth (m): 0.50 - 1.00 Sampling Method: Submitted by client*

ilac-MR/

Material: Clay Source: On-Site

AS 1289.7.1.1 **Swell Test**

Swell on Saturation (%): -1.7 Moisture Content before (%): 19.3 Moisture Content after (%): Est. Unc. Comp. Strength before (kPa): 250 Est. Unc. Comp. Strength after (kPa):

Shrink Test AS 1289.7.1.1

Shrink on drying (%): 4.1 Shrinkage Moisture Content (%): 19.9 Est. inert material (%): Crumbling during shrinkage: Nil Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 2.3

Comments

Clay, low to medium plasticity, brown.

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Rock Strength Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: RS:NEWC23S-07828 Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

4. Endigt

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 17/07/2023

Sample Details

Sample ID: NEWC23S-07828

Field ID: 00003 Date Sampled: 10/07/2023 Date Submitted: 14/07/2023 Date Tested: 14/07/2023

Project Location:

Sample Location: TP02-P, @0.60 - 1.00, Rock

Test Method: AS 4133.4.1 Sampling Method: Submitted by client* Material:

Rock Source: On-Site

Specification: No Specification

General Details

Test Machine: 19595 Storage History: Unknown Moisture Condition: D Loading Rate: 30sec-3min

Irregular	/Block				Orie	ntat	ion 1		Orie	ntati	on 2		
Sample ID	Rock Type	Location	Sample Dimensions	Depth	P kN	Is MPa	Is(50) MPa	Failure Mode	P kN	Is MPa	Is(50) MPa	Failure Mode	la(50) MPa
1	Rock								3.74	4.0	3.2	valid	
2	Rock								3.22	2.9	2.4	valid	
3	Rock								6.16	3.6	3.3	valid	
4	Rock								3.87	2.1	2.0	valid	
5	Rock								4.26	2.3	2.2	valid	
6	Rock								2.86	2.4	2.0	valid	
7	Rock								3.94	3.9	3.2	valid	
8	Rock								5.65	4.2	3.6	valid	
9	Rock								5.74	2.9	2.8	valid	
10	Rock								4.98	4.0	3.4	valid	

Comments

Substance = Valid Break

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA Project No.:

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07820-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Tristram Johnson (Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 25/07/2023

Sample Details

Sample ID: NEWC23S-07820 Date Sampled: 10/07/2023 Source: On-Site Material: Clay

Specification: No Specification Sampling Method: Submitted by client* Project Location: EP3229 Galambine, NSW.

Sample Location: TPNW03-P

@0.60 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	12.5	
Date Tested		14/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.92	
Standard OMC (%)		12.5	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		74	
LL Method		Visual / Tactile Assessment	
Date Tested		17/07/2023	
CBR at 5.0mm (%)	AS 1289.6.1.1	8	
Dry Density before Soaking (t/m³)		1.91	
Density Ratio before Soaking (%)		99.5	
Moisture Content before Soaking (%)		12.5	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m³)		1.90	
Density Ratio after Soaking (%)		99.0	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		15.4	
Moisture Content of Remaining Depth (%)		13.2	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		150	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		24/07/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07831-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431

NATA Accredited Laborate Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07831

Date Sampled: 10/07/2023

Source: On-Site

Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location:

Sample Location: TP05-P

@0.40 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	7.4	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.93	
Standard OMC (%)		12.0	
Retained Sieve (mm)		19	
Oversize Material (%)		8	
Curing Time (h)		259	
LL Method		Visual / Tactile Assessment	
Date Tested		25/07/2023	
CBR at 2.5mm (%)	AS 1289.6.1.1	11	
Dry Density before Soaking (t/m³)		1.93	
Density Ratio before Soaking (%)		100.0	
Moisture Content before Soaking (%)		12.3	
Moisture Ratio before Soaking (%)		100.5	
Dry Density after Soaking (t/m³)		1.92	
Density Ratio after Soaking (%)		99.5	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		14.6	
Moisture Content of Remaining Depth (%)		13.1	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		8	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		72	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		1/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07833-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431

Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07833
Date Sampled: 10/07/2023
Source: On-Site
Material: Clay
Specification: No Specification

Specification: No Specification Sampling Method: Submitted by client*

Project Location:

Sample Location: TP07-P

@0.50 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	17.9	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.68	
Standard OMC (%)		21.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		287	
LL Method		Visual / Tactile Assessment	
Date Tested		26/07/2023	
CBR at 2.5mm (%)	AS 1289.6.1.1	4.5	
Dry Density before Soaking (t/m³)		1.66	
Density Ratio before Soaking (%)		99.0	
Moisture Content before Soaking (%)		20.6	
Moisture Ratio before Soaking (%)		99.0	
Dry Density after Soaking (t/m³)		1.66	
Density Ratio after Soaking (%)		99.0	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		24.1	
Moisture Content of Remaining Depth (%)		21.1	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		144	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		7/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07835-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431

Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07835
Date Sampled: 10/07/2023
Source: On-Site
Material: Clay
Specification: No Specification

Sampling Method: No Specification Submitted by client*

Project Location:

Sample Location: TP09-P

@0.50 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.8	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.84	
Standard OMC (%)		15.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		219	
LL Method		Visual / Tactile Assessment	
Date Tested		26/07/2023	
CBR at 5.0mm (%)	AS 1289.6.1.1	4.5	
Dry Density before Soaking (t/m³)		1.83	
Density Ratio before Soaking (%)		99.5	
Moisture Content before Soaking (%)		14.8	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m³)		1.83	
Density Ratio after Soaking (%)		99.5	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		15.5	
Moisture Content of Remaining Depth (%)		14.2	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		212	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		7/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07835-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431

Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07835
Date Sampled: 10/07/2023
Source: On-Site
Material: Clay
Specification: No Specification

Sampling Method: No Specification Submitted by client*

Project Location:

Sample Location: TP09-P

@0.50 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	14.8	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.84	
Standard OMC (%)		15.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		219	
LL Method		Visual / Tactile Assessment	
Date Tested		26/07/2023	
CBR at 5.0mm (%)	AS 1289.6.1.1	4.5	
Dry Density before Soaking (t/m³)		1.83	
Density Ratio before Soaking (%)		99.5	
Moisture Content before Soaking (%)		14.8	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m³)		1.83	
Density Ratio after Soaking (%)		99.5	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		15.5	
Moisture Content of Remaining Depth (%)		14.2	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		212	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		7/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA Project No.:

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07836-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla

(Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07836 Date Sampled: 10/07/2023 Source: On-Site Material: Clay Specification:

No Specification Sampling Method: Submitted by client*

Project Location:

Sample Location: TP10-P

@0.50 - 0.90

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	11.0	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.72	
Standard OMC (%)		19.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		261	
LL Method		Visual / Tactile Assessment	
Date Tested		25/07/2023	
CBR at 2.5mm (%)	AS 1289.6.1.1	5	_
Dry Density before Soaking (t/m³)		1.72	
Density Ratio before Soaking (%)		100.0	
Moisture Content before Soaking (%)		18.7	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m³)		1.72	
Density Ratio after Soaking (%)		99.5	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		20.6	
Moisture Content of Remaining Depth (%)		19.5	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		50	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		1/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07838-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Ja

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07838
Date Sampled: 10/07/2023
Source: On-Site
Material: Clay
Specification: No Specification

Sampling Method: No Specification Submitted by client*

Project Location:

Sample Location: TP12-P

@0.60 - 1.00

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	10.7	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.85	
Standard OMC (%)		15.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		140	
LL Method		Visual / Tactile Assessment	
Date Tested		26/07/2023	
CBR at 2.5mm (%)	AS 1289.6.1.1	4.5	
Dry Density before Soaking (t/m³)		1.83	
Density Ratio before Soaking (%)		99.5	
Moisture Content before Soaking (%)		14.9	
Moisture Ratio before Soaking (%)		99.5	
Dry Density after Soaking (t/m³)		1.82	
Density Ratio after Soaking (%)		98.5	
Swell (%)		1.0	
Moisture Content of Top 30mm (%)		17.1	
Moisture Content of Remaining Depth (%)		16.0	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		96	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		1/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07839-1 Issue No: 1

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jackson Antilla (Senior Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 9/08/2023

Sample Details

Sample ID: NEWC23S-07839
Date Sampled: 10/07/2023
Source: On-Site
Material: Clay
Specification: No Specification

Sampling Method: No Specification Submitted by client*

Project Location:

Sample Location: TP13-P

@0.20 - 0.70

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	7.7	
Date Tested		25/07/2023	
Standard MDD (t/m³)	AS 1289.5.1.1	1.98	
Standard OMC (%)		11.0	
Retained Sieve (mm)		19	
Oversize Material (%)		0	
Curing Time (h)		121	
LL Method		Visual / Tactile Assessment	
Date Tested		25/07/2023	
CBR at 5.0mm (%)	AS 1289.6.1.1	8	
Dry Density before Soaking (t/m³)		1.98	
Density Ratio before Soaking (%)		100.5	
Moisture Content before Soaking (%)		11.2	
Moisture Ratio before Soaking (%)		100.0	
Dry Density after Soaking (t/m³)		1.98	
Density Ratio after Soaking (%)		100.5	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		14.2	
Moisture Content of Remaining Depth (%)		12.4	
Compaction Hammer Used		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Retained on 19 mm Sieve (%)		0	
CBR Moisture Content Method		AS 1289.2.1.1	
Sample Curing Time (h)		50	
Plasticity Method		Visual/Tactile Assessment	
Sample Moisture Content		AS 1289.2.1.1	
Date Tested		1/08/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07815-1

Issue No: 1

Limits

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Kerrina Christiansen (Laboratory Manager) NATA Accredited Laboratory Number:431 Date of Issue: 28/07/2023

Sample Details

Sample ID: NEWC23S-07815

Date Sampled: 10/07/2023

Source: On-Site

Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location: EP3229 Galambine, NSW.

Sample Location: TPNW01-L @0.20 - 0.70

Particle Size Distribution

Method: AS 1289.3.6.1 Drying By: Oven Date Tested: 19/07/2023

Note: Sample Washed

	Sieve Size	% Passing
ı	37.5mm	100
ı	26.5mm	100
ı	19.0mm	100
ı	13.2mm	99
ı	9.5mm	99
	6.7mm	99
	4.75mm	98
ı	2.36mm	96
1	1.18mm	92
ı	600µm	87
ı	425µm	83
ı	300µm	79
ı	150µm	73
ı	75µm	68

Other Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-Dried	
Preparation	AS 1289.1.1 D	ry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	18.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	50	
Method	F	Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	31	
Date Tested	2	0/07/2023	

Chart

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07815-1

Issue No: 1

Limits

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Kerrina Christiansen (Laboratory Manager) NATA Accredited Laboratory Number:431 Date of Issue: 28/07/2023

Sample Details

Sample ID: NEWC23S-07815

Date Sampled: 10/07/2023

Source: On-Site

Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location: EP3229 Galambine, NSW.

Sample Location: TPNW01-L @0.20 - 0.70

Particle Size Distribution

Method: AS 1289.3.6.1 Drying By: Oven Date Tested: 19/07/2023

Note: Sample Washed

	Sieve Size	% Passing
ı	37.5mm	100
ı	26.5mm	100
ı	19.0mm	100
ı	13.2mm	99
ı	9.5mm	99
	6.7mm	99
	4.75mm	98
ı	2.36mm	96
1	1.18mm	92
ı	600µm	87
ı	425µm	83
ı	300µm	79
ı	150µm	73
ı	75µm	68

Other Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-Dried	
Preparation	AS 1289.1.1 D	ry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	18.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	50	
Method	F	Four Point	
Plastic Limit (%)	AS 1289.3.2.1	19	
Plasticity Index (%)	AS 1289.3.3.1	31	
Date Tested	2	0/07/2023	

Chart

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07806-1

Issue No: 2

Limits

This report replaces all previous issues of report no 'NEWC23S-07806-1'.

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

6. Groter

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 24/07/2023

Sample Details

Sample ID: NEWC23S-07806 **Date Sampled:** 10/07/2023 Source: On-Site Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location: EP3229 Galambine, NSW.

Sample Location: TP01-L

@0.70 - 1.40

Particle Size Distribution

Method: AS 1289.3.6.1 Oven

Drying By: Date Tested: 20/07/2023

Note: Sample Washed

	Sieve Size	% Passing
ı	37.5mm	100
ı	26.5mm	99
ı	19.0mm	99
ı	13.2mm	97
ı	9.5mm	95
	6.7mm	94
	4.75mm	92
ı	2.36mm	88
1	1.18mm	83
ı	600µm	78
ı	425µm	76
ı	300µm	74
ı	150µm	71
ı	75µm	68

Other Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-Dried	
Preparation	AS 1289.1.1 Dr	y-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	18.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	59	
Method	Fo	our Point	
Plastic Limit (%)	AS 1289.3.2.1	22	
Plasticity Index (%)	AS 1289.3.3.1	37	
Date Tested	19/	07/2023	

Chart

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07817-1 Issue No: 1

IIac-MRA

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Limits

Approved Signatory: Raphael Kirby Faust

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 20/07/2023

Sample Details

Sample ID: NEWC23S-07817 Date Sampled: 10/07/2023 Source: On-Site Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location:

Sample Location: TPNW02-L

@0.20 - 0.60

Particle Size Distribution

Method: AS 1289.3.6.1 Oven

Drying By: Date Tested: 20/07/2023

Note: Sample Washed

ı	Sieve Size	% Passing
ı	37.5mm	100
ı	26.5mm	99
ı	19.0mm	99
ı	13.2mm	98
ı	9.5mm	97
	6.7mm	96
	4.75mm	94
ı	2.36mm	91
1	1.18mm	86
ı	600µm	82
ı	425µm	79
ı	300µm	77
ı	150µm	73
	75um	69

Other Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-Dried	
Preparation	AS 1289.1.1 W	/et-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	18.0	
Mould Length (mm)		254	
Crumbling		No	
Curling		Yes	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	55	
Method	ı	Four Point	
Plastic Limit (%)	AS 1289.3.2.1	24	
Plasticity Index (%)	AS 1289.3.3.1	31	
Date Tested	1	9/07/2023	

Chart

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Test Report

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

TESTNEWC01107AA **Project No.:**

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

Report No: NEWC23S-07809-1

Issue No: 2

Limits

This report replaces all previous issues of report no 'NEWC23S-07809-1'.

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

6. Groter

Approved Signatory: Greg Eveleigh

(Geotechnician)
NATA Accredited Laboratory Number:431

Date of Issue: 24/07/2023

Sample Details

Sample ID: NEWC23S-07809 Date Sampled: 10/07/2023 Source: On-Site Material: Clay

Specification: No Specification Sampling Method: Submitted by client*

Project Location: EP3229 Galambine, NSW. Sample Location: TP04-L

@0.30 - 0.50

Particle Size Distribution

Method: AS 1289.3.6.1 Oven

Drying By: Date Tested: 19/07/2023

Note: Sample Washed

I	Sieve Size	% Passing
I	26.5mm	100
I	19.0mm	100
I	13.2mm	100
I	9.5mm	99
I	6.7mm	99
ı	4.75mm	98
ı	2.36mm	96
I	1.18mm	93
I	600µm	90
I	425µm	87
I	300µm	84
I	150µm	74
١	75µm	62

Other Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Air-Dried	
Preparation	AS 1289.1.1 D	ry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	10.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	32	
Method	F	Four Point	
Plastic Limit (%)	AS 1289.3.2.1	14	
Plasticity Index (%)	AS 1289.3.3.1	18	
Date Tested	19	9/07/2023	

Chart

Comments

*Results relate only to the items tested or sampled. Issue raised to add location.

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Falling Head Permeability Test Report

rt l

Issue No:

Client: EP Risk Management

PO Box 57

Lochinvar NSW 2321

Principal:

Project No.: TESTNEWC01107AA

Project Name: EP3229 CAM Engineering Galambine Magpie Lane

Lot No.: TRN:

NATA Site Number: Newcastle Laboratory

Report No: FPERM:NEWC23S-07841

Date of Issue

Sample Details

Project Location:

Client Request ID:

Laboratory test Procedures: AS 1289.6.7.2

Sampling Method: Submitted by client*

Sample Data

Client Sample ID:

Date Sampled: 10/07/2023 **Date Tested:** 01/08/2023

Sample Location: TP02WS, @0.20 - 0.60

Material/Soil Description:

TΔ	et	$C \cap$	nd	litic	ns

Surcharge mass applied (kg)	6.0	Target Maximum Dry Density (%)	98
Surcharge pressure applied (kPa)	3	Target Optimum Moisture Content (%)	100
Material retained on 19.0mm sieve (%)		Maximum Dry Density (t/m³)	1.88
Oversize material discarded	Yes	Optimum Moisture Content (%)	13.2

MDD and OMC results from: NEWC23S-07841

Test Results

Specimen Wet Density (t/m³)2.10Laboratory Density Ratio (%)97.8Specimen Moisture Content (%)13.4Laboratory Moisture Ratio (%)101.5

Specimen Dry Density (t/m³) 1.84 Compactive Effort Standard

Permeability Results

Coefficient of Permeability $k_{20^{\circ}C}$ m/sec	8 x 10 ⁻⁹
Coefficient of Permeability k _{20°C} m/sec	8 x 10 ⁻⁹

Comments:

Environment Testing

EP Risk Management (NSW) 80 Mount Street, North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Ovidiu Pruteanu

Report1008273-SProject nameGALAMBINEProject IDEP3229Received DateJul 13, 2023

Client Sample ID			TP01 WS	TP NW 02L	TP 07-L	TP 09-L
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0032490	S23-JI0032491	S23-JI0032492	S23-JI0032493
Date Sampled			Not Provided ^{I12}	Not Provided ^{I12}	Not Provided ^{I12}	Not Provided ^{I12}
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	67	< 10	280	210
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	74	< 10	270	200
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	7.6	7.1	8.7	8.4
Resistivity*	0.5	ohm.m	140	1100	38	51
Sulphate (as SO4)	10	mg/kg	27	< 10	35	33
Sample Properties						
% Moisture	1	%	12	18	13	13

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 **Sydney** 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Canberra

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 25403 NATA# 1261 Site# 25466 NATA# 1261 Site# 25466 NATA# 1261 Site# 2579 & 25289

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954 35 O'Rorke Road

Tel: +64 9 526 4551

Auckland

Auckland 1061

IANZ# 1327

Penrose,

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 IANZ# 1290

Sample Receipt Advice

Company name:

EP Risk Management (NSW)

Contact name: Project name:

Project ID:

Ovidiu Pruteanu **GALAMBINE** EP3229

Turnaround time: Date/Time received 5 Day Jul 13, 2023 8:30 AM

Eurofins reference

1008273

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Bonnie Pu on phone : or by email: BonniePu@eurofins.com

Results will be delivered electronically via email to Ovidiu Pruteanu - ovidiu.pruteanu@eprisk.com.au.

Note: A copy of these results will also be delivered to the general EP Risk Management (NSW) email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600

EP3229

1008273

02 99225021

Order No.:

Report #:

Phone:

Fax:

Newcastle 1/2 Frost Drive

Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290

Company Name:

EP Risk Management (NSW)

Address:

80 Mount Street. North Sydney

NSW 2060

Project Name: Project ID:

GALAMBINE EP3229

Received: Jul 13, 2023 8:30 AM

Due: Jul 20, 2023 **Priority:** 5 Day

Ovidiu Pruteanu **Contact Name:**

Eurofins Analytical Services Manager: Bonnie Pu

		Sa	mple Detail			Aggressivity Soil Set	Moisture Set
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х
Exte	rnal Laboratory	,					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	TP01 WS	Not Provided		Soil	S23-JI0032490	Х	Х
2	TP NW 02L	Not Provided		Soil	S23-JI0032491	Х	Х
3	TP 07-L	Not Provided		Soil	S23-JI0032492	Х	Х
4	TP 09-L	Not Provided		Soil	S23-JI0032493	Х	Х
Test	Counts					4	4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chloride	Sydney	Jul 19, 2023	28 Days
- Method: LTM-INO-4270 Anions by Ion Chromatography			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Sydney	Jul 19, 2023	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25 °C as rec.)	Sydney	Jul 19, 2023	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Sulphate (as SO4)	Sydney	Jul 19, 2023	28 Days
- Method: In-house method LTM-INO-4270 Sulphate by Ion Chromatograph			
% Moisture	Sydney	Jul 17, 2023	14 Days

- Method: LTM-GEN-7080 Moisture

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

46-48 Banksia Road

Perth

NZBN: 9429046024954 Christchurch 43 Detroit Drive Rolleston,

Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

Company Name:

EP Risk Management (NSW)

Address:

80 Mount Street. North Sydney

NSW 2060

Project Name: Project ID:

GALAMBINE EP3229

Order No.: Report #:

Canberra

EP3229 1008273 02 99225021

Phone: Fax:

Received: Jul 13, 2023 8:30 AM

Due: Jul 20, 2023 **Priority:** 5 Day

Contact Name: Ovidiu Pruteanu

Eurofins Analytical Services Manager: Bonnie Pu

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

35 O'Rorke Road

Tel: +64 9 526 4551

Auckland 1061

IANZ# 1327

Auckland

Penrose,

Sample Detail Sydney Laboratory - NATA # 1261 Site # 18217							Moisture Set
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х
Exte	rnal Laboratory	<u>'</u>					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	TP01 WS	Not Provided		Soil	S23-JI0032490	Χ	Х
2	TP NW 02L	Not Provided		Soil	S23-JI0032491	Х	Х
3	TP 07-L	Not Provided		Soil	S23-JI0032492	Х	Х
4 TP 09-L Not Provided Soil S23-JI0032493							Х
Test	Counts					4	4

CHAIN OF CUSTODY RECORD

Sydney Laboratory
179 Magower Road, Giraween, NSW 2145

☐ Brisbane Laboratory
Unit 1/21 Smallwood Place, Muranie, QLD 4172

+61 7 3902 4500 EnviroSampleQLD@eurofins.com

Perth Laboratory

46-48 Banksia Road, Welshpool, WA 6108 +51 8 6253 4444 EnviroSampleWA@euro

6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 EnviroSampleVic@eurofins.com ☐ Melbourne Laboratory

Email for Invoice and obly . Posestance. Email for Results Contract ☐ 3 days ♦ □ Overnight (reporting by 9am) • Temperature (9.) □ 1 dav • Same day •

2 days •

5 days (Standard) Report No 8:30 Handed over by Jar (Glass or HDPE) Project Manager Condelly Phustean Sampler(9) Date Time Time **500mL Plastic** 18/7 Date Date Signature EDD Format ESdat, EQuIS etc Signature SYD | BNE | MEL | PER | ADL | NTL | DRW Signature Project Name Galo, w. S. Ve EP 3229 SYD | BNE | MEL | PER | ADL | ATL | DRW Postal X X X Project Ne ☐ Hand Delivered Received By claidyn flow gran Total Counts OURDIN PRUTERVI EP RAK 19 BOLTOWAT NEW CASTLE 000787536 EP 3229 17 NW 02L 1ーナの4上 7-60 dl Received By Client Sample ID TROI WS Method of Shipment Laboratory Use Only Purchase Order Special Directions Contact Name Quote ID Ne Phone Ne

Eurotins Environment Testing Australia Pty Ltd EnviroSales@eurofins.com

submission of samples to the laboratory will be deemed as acceptance of Eurofins | Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request

1008273

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb:** parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Environment Testing

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chloride		mg/kg	< 10			10	Pass		
Conductivity (1:5 aqueous extract a	t 25 °C as rec.)		uS/cm	< 10			10	Pass	
Sulphate (as SO4)			mg/kg	< 10			10	Pass	
LCS - % Recovery									
Conductivity (1:5 aqueous extract a	t 25 °C as rec.)		%	94			70-130	Pass	
Resistivity*			%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chloride	S23-JI0032491	CP	%	95			70-130	Pass	
Sulphate (as SO4)	S23-JI0032491	CP	%	105			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
		_		Result 1	Result 2	RPD			
Chloride	S23-JI0032490	CP	mg/kg	67	67	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25 °C as rec.)	S23-JI0026910	NCP	uS/cm	14	13	5.9	30%	Pass	
pH (1:5 Aqueous extract at 25 °C as rec.)	S23-JI0025338	NCP	pH Units	7.6	7.5	<1	30%	Pass	
Resistivity*	S23-JI0026910	NCP	ohm.m	710	760	5.9	30%	Pass	
Sulphate (as SO4)	S23-JI0032490	CP	mg/kg	27	26	3.0	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S23-JI0032490	CP	%	12	13	11	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 No

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 N/A

 Some samples have been subcontracted
 No

Authorised by:

Bonnie Pu Analytical Services Manager
Dilani Samarakoon Senior Analyst-Inorganic

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F PAVEMENT THICKNESS CALCULATIONS

```
CIRCLY - Version 7.0 (7 November 2022)
```

Layer no. 1 is INCLUDED in max. CDF calculation
Layer no. 2 is INCLUDED in max. CDF calculation
Layer no. 4 is INCLUDED in max. CDF calculation
Job Title: EP3229 CAM Engineering Galambine Magpie Lane

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 2.00E+05

Traffic Load Distribution:

ID: NSWPresumeUrban

Name: NSW RMS Aug 2018 - Urban Presumptive (Table 17) ESA/HVAG: 1.037

Details of Load Groups:

Load No.	Load ID	Load Category		oad ype	Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full	V	ertical Ford	e 92.1	0.75	0.00
2	SAST53	SAST53	V	ertical Forc	e 102.4	0.80	0.00
Load Lo	cations:						
Locatio	on Load	Gear	X	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	
1	SAST53	1	0.0	0.0	1.00E+00	0.00	
2	SAST53	1	2130.0	0.0	1.00E+00	0.00	

Details of Layered System:

ID: Aust2017-1 Title: Austroads 2017 - Example 1 - Unbound Granular Pavement

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	AC14	Iso.	2.20E+03	0.40			
2	rough	AC20	Iso.	2.50E+03	0.40			
3	rough	Gran_300	Aniso.	3.00E+02	0.35	2.22E+02	1.50E+02	0.35
4	rough	Sub_CBR6	Aniso.	6.00E+01	0.45	4.14E+01	3.00E+01	0.45

Performance Relationships:

Perior	mance ker	ationships.				
Layer	Location	Material	Component	Perform.	Perform.	Shift
No.		ID		Constant	Exponent	Factor
1	bottom	AC14	ETH	0.004705	5.000	6.0
2	bottom	AC20	ETH	0.004342	5.000	6.0
4	t.op	Sub CBR6	EZZ	0.009150	7.000	

Reliability Factors:

Project Reliability: Austroads 95%

Layer Reliability Material
No. Factor Type
1 6.00 Asphalt 6.00

Asphalt Subgrade (Austroads 2017) 4 1.00

Details of Layers to be sublayered:

Layer no. 3: Austroads (2004) sublayering

Automatic layer thickness design: Layer number to be designed: 2

Minimum thickness: 0

Maximum thickness: 5000

Strains:

Layer No.	Thickness	Material ID	Axle	Unitless Strain	
1	50.00	AC14	SADT(80):	1.464E-05	
2	75.23	AC20	SAST(53):	5.640E-06	(Compressive)
			,	3.761E-04 3.644E-04	
4	0.00	Sub_CBR6		8.896E-04	

Results:

Layer	Thickness	Material	Axle	CDF
No.		ID	Group	
1	50.00	AC14	Total:	3.135E-08
			SAST:	0.000E+00
			SADT:	5.017E-09
			TAST:	0.000E+00
			TADT:	1 881E-08

			TRDT: QADT:	7.473E-09 5.250E-11
2	75.23	AC20	Total: SAST: SADT: TAST: TADT: TRDT: QADT:	9.993E-01 4.414E-01 8.389E-02 3.358E-02 3.145E-01 1.250E-01 8.779E-04
3	150.00	Gran_300		n/a
4	0.00	Sub_CBR6	Total:	1.704E-02

```
CIRCLY - Version 7.0 (7 November 2022)
```

Layer no. 1 is INCLUDED in max. CDF calculation
Layer no. 2 is INCLUDED in max. CDF calculation
Layer no. 4 is INCLUDED in max. CDF calculation
Job Title: EP3229 CAM Engineering Galambine Magpie Lane

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 6.00E+05

Traffic Load Distribution:

ID: NSWPresumeUrban

Name: NSW RMS Aug 2018 - Urban Presumptive (Table 17) ESA/HVAG: 1.037

Details of Load Groups:

Load No.	Load ID	Load Category	Loa Tyr		Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full		rtical Force	e 92.1	0.75	0.00
2	SAST53	SAST53	Ve	rtical Force	e 102.4	0.80	0.00
Load I	ocations:						
Locati	on Load	Gear	X	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	
1	SAST53	1	0.0	0.0	1.00E+00	0.00	
2	SAST53	1	2130.0	0.0	1.00E+00	0.00	

Details of Layered System:

ID: Aust2017-1 Title: Austroads 2017 - Example 1 - Unbound Granular Pavement

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	AC14	Iso.	2.20E+03	0.40			
2	rough	AC20	Iso.	2.50E+03	0.40			
3	rough	Gran_300	Aniso.	3.00E+02	0.35	2.22E+02	1.50E+02	0.35
4	rough	Sub_CBR6	Aniso.	6.00E+01	0.45	4.14E+01	3.00E+01	0.45

Performance Relationships:

Perior	mance Rel	ationships.				
Layer	Location	Material	Component	Perform.	Perform.	Shift
No.		ID		Constant	Exponent	Factor
1	bottom	AC14	ETH	0.004705	5.000	6.0
2	bottom	AC20	ETH	0.004342	5.000	6.0
4	t.op	Sub CBR6	EZZ	0.009150	7.000	

Reliability Factors: Project Reliability: Austroads 95%

Layer Reliability Material
No. Factor Type
1 6.00 Asphalt 6.00

Asphalt Subgrade (Austroads 2017) 4 1.00

Details of Layers to be sublayered:

Layer no. 3: Austroads (2004) sublayering

Automatic layer thickness design: Layer number to be designed: 2

Minimum thickness: 0 Maximum thickness: 5000

Strains:

Layer No. 1	Thickness	Material ID AC14	Axle	Unitless Strain	
Τ.	50.00	AC14	SADT(80):	1.217E-05	(Compressive)
0	0.4 45	7,000	SAST(53):	2.574E-05	(Compressive)
2	94.45	AC20	SADT(80):	3.065E-04	
		~ 1 ~	SAST(53):	2.864E-04	
4	0.00	Sub_CBR6	SADT(80):	7.541E-04	

Results:

Layer No.	Thickness	Material ID	Axle Group	CDF
1	50.00 94.45	AC14	m-+-1.	Compressive
2	94.45	AC20	Total: SAST: SADT:	3.973E-01 9.048E-02

3 150.00 Gran_300 n/a				TAST: TADT: TRDT: QADT:	3.022E-02 3.392E-01 1.348E-01 9.469E-04	
	3	150.00	Gran_300		n/a	
4 0.00 Sub_CBR6 Total: 1.607E-02	4	0.00	Sub_CBR6	Total:	1.607E-02	

CONCRETE PAVEMENT DESIGN SHEET

Client: CAM Engineering

Project Number: EP3229

Project Name:Magpie Lane GalambineRoad Section:Concrete Roundabout

Location: Galambine

Design Parameters

Project design reliability 95%

Design period 40 years

Design Traffic (NDT) 2.00E+05

Traffic Load Distribution AGPT02-12 (eg TLD)

Design subgrade 6.0%
Effective CBR 40%
Load safety factor (LSF) 1.50

Design Requirements

Subbase 150mm bound

Concrete base type Steel fibre reinforced concrete pavement

Transvers contraction joints Undowelled joints

Shoulder support Without shoulder support

Design flexural strength 5.5MPa (28-day)

Concrete Basecourse Thickness Design

Minimum Base Thickness191mm SFCPMinimum flexural strength5.5MPa (28-day)

Total percentage fatigue 97 %

Total percentage erosion 17 %

Calculated by: O.P Checked by: J.Y

Date: 18/08/2023

CONCRETE PAVEMENT DESIGN SHEET

Client: CAM Engineering

Project Number: EP3229

Project Name:Magpie Lane GalambineRoad Section:Concrete Roundabout

Location: Galambine

Design Parameters

Project design reliability 95%

Design period 40 years

Design Traffic (NDT) 6.00E+05

Traffic Load Distribution AGPT02-12 (eg TLD)

Design subgrade 6.0%
Effective CBR 40%
Load safety factor (LSF) 1.50

Design Requirements

Subbase 150mm bound

Concrete base type Steel fibre reinforced concrete pavement

Transvers contraction joints Undowelled joints

Shoulder support Without shoulder support

Design flexural strength 5.5MPa (28-day)

Concrete Basecourse Thickness Design

Minimum Base Thickness197mm SFCPMinimum flexural strength5.5MPa (28-day)

Total percentage fatigue 99 %

Total percentage erosion 41 %

Calculated by: O.P Checked by: J.Y

Date: 18/08/2023

Appendix G FOUNDATION MAINTENANCE AND FOOTING PERFORMANCE

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
P	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Description of typical damage and required repair **Damage** Approximate crack width limit (see Note 3) category Hairline cracks < 0.1 mm 0 Fine cracks which do not need repair <1 mm 1 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm 2 Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks 3 to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 15-25 mm but also depend 4 especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited

