Plantation Pine Products

Appendix F - Traffic Impact Assessment

David Pavey Pty Ltd trading as

Pavey Consulting Services

Specialising in
Traffic Impact Assessments and Transportation Planning
Road Safety, Traffic Management Plans and Traffic Control Plans
Civil and Structural Design
Project Management and Contract Administration
Mediation and Government Relations

Integrated Transport Assessment

Proposed Quarry

39 Razorback Road Running Stream NSW

22 July 2022 Rev 1
Copyright © 2022 David Pavey Pty Ltd, trading as Pavey Consulting Services. This report has been prepared by David Pavey Pty Ltd. Reproduction without written authority from David Pavey Pty Ltd is prohibited.

Restrictions on Use

This report has been prepared specifically for Borg Property and related companies as the client. No part of this report may be referred to or quoted in any way without the express written approval of David Pavey Pty Ltd.

No party other than Borg Property and related companies may rely upon any representation in this report for any purpose whatsoever, and David Pavey Pty Ltd accepts no liability for any such party relying upon this report.

Prepared By

David Pavey
Director
B.E (Civil) Grad Dip LGE. LGE Cert. MAIPM, MAICD, MAITPM, MIPWEA

Authorised SafeWork NSW - Prepare a Work Zone Plans - No TCT1017730
NSW Department of Planning and Environment Secretary's Approved Person to prepare the Traffic Management Plan (TMP)

Pavey Consulting Services
Email; paveyconsulting@iinet.net.au
Phone: 0419696212

David Pavey Pty Ltd
23 Stanley Street
Merewether
NSW 2291
ABN 12150774413
ACN 150774413

PAVEY CONSULTING SERVICES

DOCUMENT CONTROL SHEET

Document Type:	REPORT
Title:	Integrated Transport Assessment Proposed Quarry - Running Stream

Release Level:

	Issued for Review	\checkmark	Issued for DA Submission
	75% Complete		Issued for Construction
	100% Complete		Restricted Distribution

Revisions:

Rev No	Revision Details	Date	By	Chkd	Appd
$\mathbf{0}$	Final Draft for Client Review	$3 / 2 / 22$	DGP	SVP	DGP
$\mathbf{0}$	Final for Development Application Submission	$17 / 7 / 22$	DGP	SVP	DGP

Table of Contents

1. INTRODUCTION 4
1 LIMITS OF REPORT 4
2 BASIS OF INTEGRATED TRANSPORT ASSESSMENT 4
3 SEARS REQUIREMENTS 5
4 EXISTING SITE CONDITIONS CONDITION 6
SITE LOCATION 6
the location of the site is shown as Figure 1 And 2 below 6
Existing Approved Development 7
SITE AcCESS 7
5 PROPOSED DEVELOPMENT 9
Proposed Development 9
hours of Operation 10
6 TRAFFIC GENERATION 10
Trip Generation. 10
TRAFFIC DIStRIBUTION 11
7 TRAFFIC IMPACT AT INTERSECTIONS 11
CRASH DATA 11
effect on intersection Performance 12
Sight Distance and Visibility issues 16
8 IMPACT ON PUBLIC TRANSPORT 18
9 PROPOSED ROAD WORKS AND INTERSECTION WORKS 18
bitumen sealing of Razorback Road 18
Improved intersection warning signage 18
IMPROVEMENT OF SIGHT DISTANCE TO THE NORTH 18
10 TRAFFIC MANAGEMENT PLAN AND DRIVER CODE OF CONDUCT 24
11 SUMMARY 24

1. INTRODUCTION

Pavey Consulting Services (PCS) has been commissioned by SpaceUrban Pty. Ltd. On behalf of Plantation Pine Products Australia Pty Ltd (PPPA) to provide an Integrated Transport Assessment (ITA) to support an application for a proposed quarry at 39 Razorback Road, Running Stream, NSW.
PPPA proposes to develop and operate a sand and gravel quarry on the 'Turonfels' property at 39 Razorback Road, Running Stream, approximately 8 km south of llford within the MidWestern Regional Council Local Government Area (LGA). The site is located approximately 1 km west of the Castlereagh Highway.

Figure 1 shows the location of the quarry.
The quarry would extract up to 200,000 tonnes per annum over a period of up to 30 years and will include access roads, a site office, workshop and weighbridge. The quarry will be progressively rehabilitated to pasture and pine plantation with potential future use of the facilities area for forestry related activities.
This report includes consideration of issued raised in Letter Requirements of SEARS No 1523 dated 2/3/21 and additional requirements set out in Transport for NSW (TfNSW) letter of 1 June 2021.

1 Limits of Report

This report considers the instructions and requirements of our client. Pavey Consulting Services (PCS) has taken care in the preparation of this report, however it neither accepts liability nor responsibility whatsoever in respect of:

- Any use of this report by any third party,
- Any third party whose interests may be affected by any decision made regarding the contents of this report, and/or
- Any conclusion drawn resulting from omission or lack of full disclosure by the client, or the clients' consultants.

2 Basis of Integrated Transport Assessment

This Integrated Transport Assessment (ITA) has been prepared in accordance with the relevant governmental assessment requirements, guidelines and policies, and in consultation with the relevant Government Agencies.

The ITA has been developed in accordance with:

- Austroads Guide to Traffic Management Part 3 Traffic Studies and Analysis.
- Austroads Guide to Traffic Management Part 12 Traffic Impacts of Developments; and
- NSW Roads and Maritime Services (RMS) Guide to Traffic Generating Developments (2002).

The assessment is based on the following general scope for matters to consider in a ITA which is defined by the NSW Roads and Maritime Services (RMS) Guide to Traffic Generating Developments (RTA 2002):

- The existing locality and surrounding land uses,
- The existing road networks,
- Traffic generation characteristics,
- Traffic impacts, and
- A summary of assessed traffic impacts and any traffic mitigation measures proposed.

3 SEARS REQUIREMENTS

As outlined in the SEARs and TfNSW requirements the following aspects are address in this report as they relate to Traffic \&Transport issues.
SEARS requirements.

- Traffic \&Transport:
o accurate predictions of the road traffic generated by the construction and operationof the development, including a description of the types of vehicles likely to be used fr transportation of quarry products,
o an assessment of potential traffic impacts on the capacity, condition, safety and efficiency of the local and State Road networks, detailing the nature of the traffic generated, transport routes, traffic volumes and potential impacts on local and regional roads,
o a description of the measures that would be implemented to maintain and/or improve the capacity, efficiency and safety of the road network (particularly the proposed transport routes) over the life of the development, and
o evidence of any consultation with relevant roads authorities, regarding the establishment of agreed contributions towards road upgrades or maintenance; and
o a description of access roads, specifically in relation to nearby Crown roads and firetrails.
Issues raised by TfNSW:
- Project schedule:
o Hours and days of work, number of shifts and start and end times, and
o Transport considerations at each phase and stage of the project, including construction, operation and decommissioning.
- Traffic volumes:
o Existing background traffic,
o Project-related traffic for each phase or stage of the project, and
o Projected cumulative traffic at commencement of operation, and a 10-year horizon post-commencement.
- Traffic characteristics:
o Number and ratio of heavy vehicles to light vehicles,
o Peak times for existing traffic,
o Peak times for project-related traffic including commuter periods,
o Proposed hours for transportation and haulage,
o Interactions between existing and project-related traffic, and
o A description of all over size and over mass vehicles and the materials to be transported.
- The origins, destinations and routes:
o Commuter (employee and contractor) light vehicles and pool vehicles,
o Heavy (haulage) vehicles, and
o Over size and over mass vehicles,
- The impact of traffic generation on the public road network and measures employed to ensure traffic efficiency and road safety during construction, operation and decommissioning of the project,
- The need for improvements to the road network, and the improvements proposed such as road widening and intersection treatments, to cater for and mitigate the impact of project related traffic,
- Proposed road facilities, access and intersection treatments are to be identified and be in accordance with Austroads Guide to Road Design including provision of Safe Intersection Sight Distance (SISD),
- Local climate conditions that may affect road safety during the life of the project (e.g. fog, wet and dry weather, icy road conditions),
- Impact on public transport (public and school bus routes),
- Propose a Traffic Management Plan (TMP) to be developed following approval of the EIS, in consultation with relevant Councils and TfNSW. The TMP would need to identify strategies to manage the impacts of project related traffic, including any community consultation measures for peak haulage periods, and
- Propose a Driver Code of Conduct for haulage operations which could include, but not be limited to:
o Safety initiatives for haulage through residential areas and/or school zones.
o An induction process for vehicle operators and regular toolbox meetings.
o A public complaint resolution and disciplinary procedure.

4 Existing Site Conditions Condition

Site Location

The location of the site is shown as Figure 1 and 2 below

Figure 1 Site Location

Figure 2 Site location

Existing Approved Development

The majority of the subject land is used for pine plantations.
Surrounding lands are primarily larger agricultural holdings practising mixed grazing, along with a scattering of pine plantations and other uses.

Site Access

Access to the proposed quarry is off Razorback Road.
Razorback Road joins the Castlereagh Highway at a "T junction" which has been upgrade in the past to a standard CHR and BAL. Deceleration lengths and storage areas are consistent with current standards and traffic volumes.

The intersection with Razorback Road and the Castlereagh Highway consists of a left-turn deceleration lane for northbound vehicles on the highway and a protected right-turn for southbound vehicles turning into Razorback Road. There is no dedicated acceleration lane for vehicles turning south onto the Castlereagh Highway, however, an overtaking lane continues for south bound traffic for approximately 150 m south of the intersection

Castlereagh Highway is a $100 \mathrm{~km} / \mathrm{h}$ highway connecting Lithgow in the south with Mudgee in the north.
Razorback Road is a local road connecting the Castlereagh Highway with Turon Road, but primarily services local properties. The road is sealed for approximately 20 m from the intersection with the Castlereagh Highway, beyond the sealed section the road is of gravel construction approximately 6 m in width.

Access into the proposed quarry site will be via an upgrade to an existing gravel entry road within private property.

Photograph 1: Looking west on Razorback Road toward the site entrance.

Photograph 2 - Looking east on Razorback Road at the intersection with the siteentrance.

Photograph 3 - Intersection of Razorback Road and Castlereagh Highway.

5 Proposed Development

Proposed Development

It is proposed to develop and operate a sand and gravel quarry on the 'Turonfels' property at 39 Razorback Road, Running Stream as shown in Figure 3 (below).

Figure 3 Proposed Site Layout
The proposed quarry will produce a maximum of 200,000 tonnes per annum (200 ktpa) of gravel and sand products, with two full time equivalent staff and a total site area of 24.7 ha including workshop, office and weighbridge facilities.
It is noted that the quarry material is loosely consolidated and will be extracted and processed without use of explosives, rock breakers or onsite crushers.

The quarry will be progressively rehabilitated to pasture and pine plantation with potential future use of the facilities area for forestry related activities.

Transport of products by road is proposed to be limited to 1,500 tonnes per day, or up to 5 truckloads per hour (10 movements in and out combined).

Hours of Operation

It is likely that the quarry will initially operate on a campaign basis to meet specific demands moving toward a potential full-time quarry pending product demand.
When operating, it is intended to operate the quarry under the following hours:

- Extraction and haulage:
o Monday to Friday 7 am to 6 pm .
o Saturday 8 am to 1 pm .
- No extraction or haulage activities on Sundays or public holidays.
- Incidental maintenance activities may occur outside the above times, but only where activities can be conducted and not be audible at neighbouring dwellings.

6 Traffic Generation

Trip Generation

Construction

All movements of people and materials will be via the road network.
Construction will occur over an estimated 12-week period during will include the following works:

- Bitumen sealing of Razorback Road to western property boundary,
- Construction of private haul road,
- Construction of workshop and crib hut,
- Construction of the weigh bridge, and
- Initial topsoil stripping and placement and planting of topsoil stockpiles as a noise bund along the western boundary of the quarry.
Quarry operations will commence once the above actions are completed.
Traffic movements during construction are anticipated to be:
- Light vehicle movements for construction workers 6 (i.e. 3 movements into and out of the site each day) movements generally in the morning and afternoon as construction workers arrive and leave the site,
- Delivery of construction materials for the site office, workshop, and weighbridge.
- Delivery of temporary construction worker toilets, lunchrooms, and site office,
- Mobilisation and de-mobilisation of heavy plant and equipment, and
- Delivery of concrete where required.

It is anticipated that heavy vehicles peak at 4 (i.e. 2 movements into and out of the site each day) vehicles arriving at the site to unload components).

Operations:

The proposed quarry operations are assumed to generate:

- Up to 5 laden trucks per hour exiting the Razorback Road intersection during operating hours (7:00 am to 6 pm Monday to Saturday).
- Up to 5 unladen trucks per hour entering the Razorback Road intersection during operating hours (7:00 am to 6 pm Monday to Saturday).
- Up to 4 vehicles of employees entering Razorback Road from approximately 7:00 am
- Up to 4 vehicles of employees leaving Razorback Road from approximately 5:00 pm

Decommissioning

At the end of quarries operational life of 30 years the development area will be decommissioned. During decommissioning, all above ground infrastructure would be removed and the land rehabilitated with vegetation consisting of pasture grasses initially to improve soil stability and then planted with pine consistent the adjacent pine plantation.
It is anticipated that similar vehicle movements as is in operational phase will continue in this decommissioning phase.

Traffic Distribution

It is anticipated that for all phases of this development the distribution of traffic will be as follows:

- 50 / 50 split to the north and south for heavy vehicles, and
- 100% from the north for employees.

7 Traffic Impact at Intersections

Crash Data

Crash data from the NSW Centre for Road Safety Crash and Casualty Statistics Maps (20152019) shows no crashes at the intersection between 2015 and 2019. Two serious crashes recorded on the Castlereagh Highway and 1 serious crash and 1 injury/fatality crash recorded on Razorback Road are at a distance from the intersection.

	Crash ID	Degree of crash	 Description	Road type	Lighting	Killed	Injured
1	1129642	Serious injury	80: Off left/right bend	2-way undivided	Dusk	-	3
2	1181491	Serious injury	74: On road, out of control	2-way undivided	Daylight	-	1
3	1183615	Serious injury	86: Off left/left bend	2-way undivided	Daylight	-	1
4	1092479	Fatal	20: Head on	2-way undivided	Daylight	1	6

Figure 4: NSW Centre for road Safety Crash and Casualty Statistics Map 2015 2019

Effect on Intersection Performance

Establishment of current traffic volumes
A traffic count was carried out on the 9 November 2021 between the hours of 8:00 am and $4: 00 \mathrm{pm}$ am to determine all traffic movements at the intersection. Results of the count are indicated below in Table 1.

Table 1 Criteria for Evaluating Capacity of Intersection

In summary the following Peak hour movements were determined as shown table 2 below
Table 2 Maximum hourly traffic movements

	10 to 11 am	11 to 12 am
Path	140	143
$1 \mathrm{~A}-\mathrm{LV}$	66	65
$1 \mathrm{~A}-\mathrm{HV}$	14	10
$2-\mathrm{LV}$	2	3
$2-\mathrm{HV}$	0	0
$3-\mathrm{LV}$	1	2
$3-\mathrm{HV}$	0	0
$4-\mathrm{LV}$	0	2
$4-\mathrm{HV}$	0	0
$5-L V$	0	0
$5-H V$	0	0
$6-\mathrm{LV}$	48	52
$6-H V$	9	9

Intersection Operation

How adequate the capacity of an intersection is judged by whether it can physically and operationally cater for the traffic using it.
The performances of the intersections relevant to the proposal have been assessed using the intersection modelling SIDRA software. The model provides parameters of the performance of an intersection including the degree of saturation (DoS) and the average delay per vehicle. It provides an accurate and consistent guide to the performance of an intersection under the different traffic flow scenarios. The recommended criteria for evaluating capacity of intersections are shown in Table 3

Table 3 Criteria for Evaluating Capacity of Intersection

Level of Service	Degree of Saturation (DoS)	Ave. Delay/ Veh. (Secs)
A/B good operation	less than 0.80	Less than 28
C satisfactory	0.80 to 0.85	$29-42$
D poor but manageable	0.85 to 0.90	$43-56$
E at capacity	0.90 to 1.0	$57-70$
F unsatisfactory, extra capacity required	Over 1.0	Over 70

In the absence of historical growth figures, a conservative 3\% traffic growth rate was applied. to the 2021 traffic counts to determine a 10-year forecast.
To determine if the proposed movements would have an effect on the operations of the existing intersection a SIDRA analysis was carried out.
The analysis has been carried out for the following scenarios:

- Existing 2021,
- Existing 2021 with proposed development,
- 10-year planning horizon (with above assumed growth rate), and
- 10-year planning horizon with proposed development.

Table 4 Criteria for Evaluating Capacity of Intersection

Razorback Rd

Path	Existing Movements	Post development	Existing plus post	10 years growth	Post Development 10 years growth
1A - LV	66	0	66	86	86
$1 \mathrm{~A}-\mathrm{HV}$	14	0	14	18	18
$2-\mathrm{LV}$	2	4	6	3	7
$2-\mathrm{HV}$	0	3	3	0	3
$3-\mathrm{LV}$	1	0	1	1	1
$3-\mathrm{HV}$	0	3	3	0	3
$4-\mathrm{LV}$	0	0	0	0	0
$4-\mathrm{HV}$	0	2	2	0	2
$5-\mathrm{LV}$	0	0	0	0	0
$5-\mathrm{HV}$	0	2	2	0	2
$6-\mathrm{LV}$	48	0	48	62	62
$6-\mathrm{HV}$	9	0	9	12	12

Traffic Modelling Assumption

- Analysis was carried out for the maximum hour flow as shown in Table 2 only as worst case scenario for traffic,
- Existing intersection geometry, including lane lengths and widths were measured using engineering survey,
- SIDRA default values were adopted,
- Level of Services Method is set to RTA NSW,
- Speed environment $100 \mathrm{~km} / \mathrm{hr}$ on Castlereagh Highway and $50 \mathrm{~km} / \mathrm{hr}$ on Razorback Rd,
- Length of right turn 2 is 90 plus deacceleration lane,
- Length of left turn 5 is 50 m plus deacceleration lane, and
- Heavy Vehicles (HV) 90% in lane 1A and 10\% in lane 1B

Full details of the outputs are found in Appendix B. however a summary of this analysis is provided below

Table 5 Intersection Performance (AM Peak) South Bound Castlereagh Highway

Criteria	Base	Base with Development	Base with 10 years growth	10 Years with Development
Av. Delay (sec)	0.0	0.0	0.0	0.0
Level of Service	A	A	A	A

Table 6 Intersection Performance (AM Peak) North Bound Castlereagh Highway.

Criteria	Base	Base with Development	Base with 10 years growth	10 Years with Development
Av. Delay (sec)	0.0	0.0	0.0	0.0
Level of Service	A	A	A	A

Table 7 Intersection Performance (AM Peak Right Turn into Razorback Rd)

Criteria	Base	Base with Development	Base with 10 years growth	10 Years with Development
Av. Delay (sec)	7.7	8.7	7.8	8.7
Level of Service	A	A	A	A
Q. Length- (m)	0	0	0	0

Table 8 Intersection Performance (AM peak Right turn out of Razorback Rd)

Criteria	Base	Base with Development	Base with 10 years growth	10 Years with Development
Av. Delay (sec)	8.6	14.4	9	15.6
Level of Service	A	A	A	A
Q. Length- (m)	0	0	0	0

Table 9 Intersection Performance (AM peak Left turn out of Razorback Rd)

Criteria	Base	Base with Development	Base with 10 years growth	10 Years with Development
Av. Delay (sec)	7.7	10.8	9	11
Level of Service	A	A	A	A
Q. Length- (m)	0	0	0	0

Table 10	Intersection Performance (AM peak Left turn into Razorback Road)			
Criteria	Base	Base with Development	Base with 10 years growth	$\mathbf{1 0}$ Years with Development
Av. Delay (sec)	7.8	10.4	7.8	9.6

Level of Service	A	A	A	A
Q. Length (m)	0	0	0	0

The modelling outputs as shown in Table 5 through 10 illustrate that there is no deterioration of Av Delay, Level of Service, or Que length when development traffic is added to either of the 2021 or 2031 simulations of the intersection.

In 2031 (in either scenario) the intersection operates at Level of Service of A on all legs and turn movements in the morning peak hour.
Further the no que length for the right turn into Razorback Rd under the development scenario in 10 years is evident indicating that the 90 m of available for storage of the current road layout is more than adequate.

Sight Distance and Visibility Issues

Austroads guidelines provide general parameter values, which they refer to as the Normal Design Domain (NDD).

This report discusses the existing intersection in terms of Normal Design Domain criteria only
As illustrated in Figure 4, Safe Intersection Sight Distance (SISD) is measured from a driver eye height of 1.1 m above the road to a point 1.25 m above the road, which represents the upper part of a car. It is measured along the carriageway from the approaching vehicle to a conflict point.
Austroads SISD allows the use of a 1.5 seconds' or 2.0 seconds observation time for T intersections on single carriageway roads that have a traffic volume less than 4,000 vehicles per day with the minor road having a traffic volume of less than 400 vehicles per day.

Figure 5: SISD diagrams from Austroads, Figure 3.2

Table 11 Intersection Performance (AM peak Left turn into Razorback Road)

Safe Intersection Sight Distance values are: Design speed (km/h)	Reaction time (seconds)	SISD (m)	Correction for 8% grade (m)	Resultant SISD (m)
100	1.5	234	-20	214
100	2.0	248	-20	228

Exiting Safe Intersection Sight Distance to the South

Available SISD to and from the south of Razorback Road was measured at greater 250 m from engineering survey and as such meets the Austroads guidelines for both reaction time of 1.5 and 2 seconds. Full details including long sections are shown on Arkhill Engineers drawing on SK4153-012 sight line 2 in Appendix B.

Photograph 4: Looking south from Razorback Road to an approaching vehicle

Existing Intersection Safe Sight Distance to the north.

Available SISD to and from the north from Razorback Road was measured at 135 m to 140 m , from engineering survey. This does not meet the requirements in Austroads for this speed environment.

As shown in Photograph 5 and 6, sight distance north to the highway is restricted by a vegetated embankment on the northern side of Razorback Road.
Signage and vegetation at the toe of the embankment batter further obscure the sight line.

Photograph 5 and 6: Looking north from Razorback Road to an approaching vehicle

Due to the reduced site distance and the impact of vegetation and embankment to the north it is proposed to cut back this embankment to achieve the desired site distances detailed in table 11. The concept for these proposed earthworks is discussed in section 9 below.

8 Impact on public transport

There is no impact on public transport as traffic movements are minimal.

9 Proposed Road Works and Intersection Works

To address the increase traffic movements, highlighted above it is proposed to carry out the following works:

Bitumen sealing of Razorback Road

The applicant proposes to bitumen seal, to Council requirements, that section of Razorback Road from the existing seal near Castlereagh Highway to 15 m west of the entrance to the quarry. Such sealing will ensure that the minor increase in vehicle movements will not have an adverse effect on road safety or the amenity of adjacent properties.

Improved intersection warning signage.

The current Castlereagh Highway "side road intersection" sign on approach from the north is installed alongside CAMs and may not be obvious to drivers, reducing driver awareness of the Razorback Road intersection.
Installing a larger sized sign, repositioned to be clear of the CAMs and supplemented with a TRUCKS CROSSING OR ENTERING sign would reinforce to drivers that they are approaching an intersection where heavy vehicles may be entering the highway, assisting with driver awareness.

Improvement of sight distance to the north.

In light of the comments provide in Section 7 two alternatives were examined to determine if and how an improved sight distance could be achieve, namely provision of an acceleration lane to the south or improving sight distance to the north by removing some of the embankment and vegetation.

Acceleration Lane

Austroads and TfNSW standards sets out criteria for minimum length of acceleration lanes on the departure side of intersections. Section 5.5 Austroads Guide to Road Design Part 4A 2010 - Intersections provides details of acceptable design lengths for heavy vehicle acceleration lanes as shown in figure 6 below.

Figure 6 - Acceleration lane on Departure side of seagul Intesection treatment

This guide (Austroads) provides a range of lengths for acceleration lanes for different road environments and speeds based on a heavy vehicle achieving a speed $20 \mathrm{~km} / \mathrm{hr}$ below the mean free speed of the through traffic when it merges.
Based on current TfNSW comments the mean free speed would be the speed limit at this location (ie $100 \mathrm{~km} / \mathrm{h}$.) Hence a heavy vehicle will need to accelerate to $80 \mathrm{~km} / \mathrm{hr}$ prior to merging.

In this location the down hill grade of up to 4% will assist in reducing the length but in the absence of accurate survey data an acceleration lane in the order of 400 m to 500 m may be required for a heavy vehicle to come up to speed.

Table 5.7: Acceleration lane lengths (m) for semi-trailers to accelerate from rest to a specified speed on a level or downgrade

Downgrade $(\%) \mid$	Truck speed $(\mathrm{km} / \mathrm{h})$				
	100	90	80	70	60
0	2400	1500	910	580	320
1	1400	940	840	410	280
2	970	700	500	330	210
3	760	560	400	280	180

Figure 7 Extract form Austroads
Based on the above table and free speed of $100 \mathrm{~km} / \mathrm{hr}$, figure 8 below indicates the possible extent of an acceleration lane meeting the criteria set out above.

Figure 8 Extent of Accelaraion lane
A site inspection identified the following issues that will need to be accommodated in the development of a concept design of the proposed improvement.

- Interaction of the merge of the two traveling lanes into one at the same location as the merge of the acceleration lane into the through lane.
- The road geometry (curvature) has the risk of reducing sight lines due to vegetation on the inside of the curve (including in private property) that might need to be removed.
- To meet the TfNSW requirement the existing CHS may need to be converted into a seagull intersection to ensure that vehicles entering the acceleration lane are protected from through traffic, and
- As shown in photographs 7 and 8 below there appears to be a steep drop off from the existing pavement and it may be difficult to contain the road batter with the additional pavement widening required within the road reserve.

Photograph 7 Embankment inside of curve southbound Castlereagh Highway

Photograph 8 Embankment inside of curve southbound Castlereagh Highway

Improving site lines to the north

As mentioned above, sight distance north to the highway is restricted by a vegetated embankment on the northern side of Razorback Road. Signage and vegetation at the toe of the embankment batter further obscure the sight line.

An alternative option to avoid a long acceleration lane would be to trim the embankment on the northern side of the intersection to improve the site lines

Figures 7 and 8 below indicates that clearin and excavation od embankment to achieve the desired sire distance of 205 m .

Discussion are underway to purchase the land required for this activity/

Figure 9 Extent of embankment works

Figure 10 Extent of embankment works

As shown in photographs 9, 10 and 11 the embankment appears to be suitable to bench back and stand at a steep slope without the need for a retaining wall. A slope stability investigation would need to be carried out to determine the appropriate batter slope.
An earth catch drain at the top of the batter and a rock lined dish drain at the bottom of the batter has been provided to protect the batter and road pavement from surface water shedding from the area above the batter.

Photgragh 9 Embankment to north of Intesection

Photgragh 10 Embankment to north of Intesection

Photgragh 11 Embankment to north of Intesection

No other pavement widening works would be required for this option.
As indicated in Section 9 it is clear that the most engineering feasible solution would be to improve sight distance to the north and it is proposed to layback the existing embankment and remove vegetation to ensure that the required Austroads sight distance is achieved.

Arkhill Engineers have completed a concept design (see Appendix B) which proves details of the extent of work required and the final landform.
Arkhill Engineers Concept Design detailed in Appendix B provides the following details:

- SK 4153-001 Site plan showing sight lines and proposed earthworks,
- SK 41530-002 Proposed upgrading to line marking,
- SK 4153-005 details of prosed earthworks,
- SK 4153-001 existing long section along centre line of Castlereagh Highway to the north,
- SK4153-012 detailing long-sections along each of the 4 nominates sight lines showing clearance above existing pavement for sight lines 1 to 3 and the obstruction caused by the embankment to sight line 4,
- SK1553-021 to 023 Details of existing sections through the embankment, and
- SK4153-015 and SK4153-025 to 027 details the proposed excavation required to achieve a clear sightline 4.
This design clearly demonstrates that such an excise of modifying the existing embankment will ensure satisfactory sight lines are achieved to the north in a costeffective method. It should be noted that the applicant is in discussions to acquire the land required to be excavated. Materials from the excavation will be used in the development of the quarry, hul roads and noise bunds.

10 Traffic Management Plan and Driver Code of Conduct

A draft Operational Traffic Management Plan (TMP) is provided in Appendix A, together with a Draft Driver Code of Conduct. This will be finalised upon approval of the development and after consultation with Mid Western Council and TfNSW.

11 Summary

The traffic impacts from the combined development have been assessed and the key findings are as follows:

- The available sight distance of Razorback Road to the south along Castlereagh Highway is adequate for the speed environment.
- The available sight distance of Razorback Road to the north along Castlereagh Highway is inadequate for the speed environment. However, a proposed concept design has been development to trim back the embank to the north and this design provides a clear sight distance meeting Austroads guidelines.
- Total traffic generation remains low and has no impact on the intersection performance and demonstrates that the current protected right run storage and left turn de acceleration lane is adequate and no other intersection improvements are necessary.
- Minor signage upgrades are warranted to improve the awareness of the approaching intersections.
- Sealing of Razorback Road to 15 m west of the quarry access will ensure that the minor increase in vehicle movements will not have an adverse effect on road safety or amenity of adjacent properties.

Based on the findings of this report, Pavey Consulting Services is of the opinion that there are no traffic engineering related matters that should preclude approval of this Development Application.

Prepared by:
David Pavey
B.E (Civil) Grad Dip LGE. LGE Cert MAICD, MAIPM

Director,
Pavey Consulting Services

Appendix A - SIDRA OUTPUTS

SITE LAYOUT

Site: [2021_CastlereaghHwy-
RazorbackRd_BY_PeakHour_v01 (Site Folder: General)]
Castlereagh Highway and Razorback Road Intersection
Base Year (2021, existing)
Peak Hour
Site Category: (None)
Stop (Two-Way)
Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

MOVEMENT SUMMARY

Site: [2021_CastlereaghHwy-

RazorbackRd_BY_PeakHour_v01 (Site Folder: General)]
Castlereagh Highway and Razorback Road Intersection
Base Year (2021, existing)
Peak Hour
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		T HV] veh/h		$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	OF JE Dist] m	Prop.	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
SouthEast: Castlereagh Highway (SE)													
21 L2	1	0	1	0.0	0.001	7.8	LOSA	0.0	0.0	0.00	0.66	0.00	75.3
22 T1	57	9	60	15.8	0.034	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
Approach	58	9	61	15.5	0.034	0.1	NA	0.0	0.0	0.00	0.01	0.00	99.4
NorthWest: Castlereagh Highway (NW)													
28 T1	80	14	84	17.5	0.028	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
29 R2	2	0	2	0.0	0.002	7.7	LOSA	0.0	0.0	0.15	0.61	0.15	57.1
Approach	82	14	86	17.1	0.028	0.2	NA	0.0	0.0	0.00	0.01	0.00	98.2
SouthWest: Razorback Road													
30 L2	1	0	1	0.0	0.002	7.7	LOSA	0.0	0.1	0.19	0.88	0.19	54.6
32 R2	1	0	1	0.0	0.002	8.6	LOSA	0.0	0.1	0.19	0.88	0.19	54.5
Approach	2	0	2	0.0	0.002	8.1	LOSA	0.0	0.1	0.19	0.88	0.19	54.5
All Vehicles	14223		14916.2		0.034	0.3	NA		0.1	0.00	0.03	0.00	97.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: METIS CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 13 December 2021 9:11:40 AM
Project: C:IUsersITriplestonelOneMetis Dropbox\1030 MetisIMC21\MC2123 SIDRA Analysis for Razorback Rd, Running StreamlC3_Mods
\MC2123_CastlereaghHwy-RazorbackRd_v01.sip9

MOVEMENT SUMMARY

Site: [2021_CastlereaghHwy-
 RazorbackRd_BC_PeakHour_v01 (Site Folder: General)]

Castlereagh Highway and Razorback Road Intersection
Base Case (existing + development)
Peak Hour
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$				$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver Delay sec	Level of Service		CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: Castlereagh Highway (SE)													
21 L2	2	2	2	100.0	0.002	10.4	LOSA	0.0	0.0	0.00	0.67	0.00	52.3
22 T1	57	9	60	15.8	0.034	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
Approach	59	11	62	18.6	0.034	0.4	NA	0.0	0.0	0.00	0.02	0.00	97.0
NorthWest: Castlereagh Highway (NW)													
28 T1	80	14	84	17.5	0.028	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
29 R2	9	3	9	33.3	0.008	8.7	LOS A	0.0	0.3	0.17	0.62	0.17	56.2
Approach	89	17	94	19.1	0.028	0.9	NA	0.0	0.3	0.02	0.06	0.02	92.7
SouthWest: Razorback Road													
30 L2	4	3	4	75.0	0.010	10.8	LOSA	0.0	0.4	0.22	0.99	0.22	41.0
32 R2	2	2	2	100.0	0.010	14.4	LOSA	0.0	0.4	0.22	0.99	0.22	41.1
Approach	6	5	6	83.3	0.010	12.0	LOSA	0.0	0.4	0.22	0.99	0.22	41.0
All Vehicles	154	33	162	21.4	0.034	1.1	NA	0.0	0.4	0.02	0.08	0.02	89.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: METIS CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 13 December 2021 9:07:43 AM
Project: C:IUsers\TriplestonelOneMetis Dropbox\1030 Metis\MC21\MC2123 SIDRA Analysis for Razorback Rd, Running StreamIC3_Mods
\MC2123_CastlereaghHwy-RazorbackRd_v01.sip9

MOVEMENT SUMMARY

Site: [2021_CastlereaghHwy-

RazorbackRd_FY_PeakHour_v01 (Site Folder: General)]
Castlereagh Highway and Razorback Road Intersection
Future Year (10 years projection)
Peak Hour
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		JT MES HV] veh/h		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% [Veh [Veh. veh	CK OF UE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthEast: Castlereagh Highway (SE)													
21 L2	1	0	1	0.0	0.001	7.8	LOS A	0.0	0.0	0.00	0.66	0.00	75.3
22 T1	74	12	78	16.2	0.044	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
Approach	75	12	79	16.0	0.044	0.1	NA	0.0	0.0	0.00	0.01	0.00	99.5
NorthWest: Castlereagh Highway (NW)													
28 T1	104	18	109	17.3	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
29 R2	3	0	3	0.0	0.002	7.8	LOSA	0.0	0.1	0.18	0.60	0.18	57.0
Approach	107	18	113	16.8	0.036	0.3	NA	0.0	0.1	0.00	0.02	0.00	97.9
SouthWest: Razorback Road													
30 L2	1	0	1	0.0	0.003	7.8	LOSA	0.0	0.1	0.23	0.86	0.23	54.4
32 R2	1	0	1	0.0	0.003	9.0	LOSA	0.0	0.1	0.23	0.86	0.23	54.3
Approach	2	0	2	0.0	0.003	8.4	LOSA	0.0	0.1	0.23	0.86	0.23	54.4
All Vehicles	184	30	194	16.3	0.044	0.3	NA	0.0	0.1	0.01	0.02	0.01	97.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: METIS CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 13 December 2021 9:10:01 AM
Project: C:IUsers\TriplestonelOneMetis Dropbox\1030 Metis\MC21\MC2123 SIDRA Analysis for Razorback Rd, Running StreamIC3_Mods
\MC2123_CastlereaghHwy-RazorbackRd_v01.sip9

MOVEMENT SUMMARY

Site: [2021_CastlereaghHwy-

RazorbackRd_FC_PeakHour_v01 (Site Folder: General)]
Castlereagh Highway and Razorback Road Intersection
Future Case (10 years projection with development)
Peak Hour
Site Category: (None)
Stop (Two-Way)

Vehicle Movement Performance													
Mov Turn ID		T HV] veh/h		$\begin{gathered} \text { 4ND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { E } \\ \text { Q } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { m } \end{aligned}$	Prop.	Effective Stop Rate	Aver. No. Cycles	Aver Speed km/h
SouthEast: Castlereagh Highway (SE)													
21 L2	3	2	3	66.7	0.003	9.6	LOSA	0.0	0.0	0.00	0.66	0.00	55.6
22 T1	74	12	78	16.2	0.044	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	100.0
Approach	77	14	81	18.2	0.044	0.4	NA	0.0	0.0	0.00	0.03	0.00	97.0
NorthWest: Castlereagh Highway (NW)													
28 T1	104	18	109	17.3	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	100.0
29 R2	10	3	11	30.0	0.009	8.7	LOSA	0.0	0.3	0.20	0.61	0.20	56.2
Approach	114	21	120	18.4	0.036	0.8	NA	0.0	0.3	0.02	0.05	0.02	93.6
SouthWest: Razorback Road													
30 L2	4	3	4	75.0	0.011	11.0	LOSA	0.0	0.5	0.26	0.98	0.26	40.8
32 R2	2	2	2	100.0	0.011	15.6	LOS B	0.0	0.5	0.26	0.98	0.26	40.9
Approach	6	5	6	83.3	0.011	12.5	LOSA	0.0	0.5	0.26	0.98	0.26	40.9
All Vehicles	197	40	207	20.3	0.044	1.0	NA	0.0	0.5	0.02	0.07	0.02	91.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: METIS CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 13 December 2021 9:11:16 AM
Project: C:IUsers\TriplestonelOneMetis Dropbox\1030 Metis\MC21\MC2123 SIDRA Analysis for Razorback Rd, Running StreamIC3_Mods
\MC2123_CastlereaghHwy-RazorbackRd_v01.sip9

Appendix B - Arkhill Engineers Concept Design

		A ARKHILL ENGINEERS				cosem			
		Borg running creek - RAZORBACK RD INTERSECTION SIGHT DISTANCE - LINEMARKING PLAN							
OESCNEP:	A.M.								
ORawn	B.S.				SK4153-002				
Approvev:	-	1:250	A1				0		-01-22

		A ARKHILL ENGINEERS							
		BORG RUNNING CREEK - RAZORBACK RD INTERSECTION EARTHWORKS WEST SIGHT LINE - SITE PLAN							
Descone:	A.M.								
ORawn	B.S.	SCAE			SK4153-005				
Apprevei	-	1:500	A1				0	17	-01-22

DATUM RL $=996.000$
natural
CHAINAG

CASTLEREAGH HIGHWAY CENTRELINE - LONGSECTION

		(A)ARKHILL ENGINEERS				
		BORG RUNNING CREEK - RAZORBACK RD INTERSECTION LONGSECTION SHEET 1 OF 2				
orame:	А.м.					
Aepaveral			$)^{\text {sethrio. }}$ SK4153-011			13-01-22

EAST SIGHT 1 - LONGSECTION

EAST SIGHT 3 - LONG SECTION

DATUM RL $=1020.000$
sight clearance SIGHT CLEARA
\qquad
 SIGHT LEVELS nATURAL
HAINAGE

WEST SIGHT - LONGSECTION

vertical data
DATUM RL $=1020.000$ SIGHT CLEARANCE TO NATURAL SIGHT LEVELS DESIGN FSL NATURAL
\qquad
 MTURAL

 CHAINAGE

WEST SIGHT - LONGSECTION

CH 180

DESIGN	N	克	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{i} \\ & \stackrel{y}{c} \end{aligned}$	～	$\begin{gathered} \text { tu } \\ \stackrel{4}{4} \\ \text { th } \end{gathered}$	d			¢
EXISTING	$\underset{y}{\tilde{i}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \text { of } \\ & \text { tit } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{\leftrightarrow}{t} \\ & \hline \end{aligned}$	尔		－	先		¢
SET	0	$\begin{aligned} & \stackrel{0}{4} \\ & \stackrel{4}{i} \end{aligned}$		$\stackrel{\circ}{6}$	8	8	$\stackrel{\circ}{\circ}$	$\stackrel{0}{4}$	8

CH 160
त्रो

RLL $=152.350$
DATUM RL 1044．500 뿐
Existing
offsEt

CH 300

design									¢
ExIsting		\％	告	$\stackrel{\text { a }}{\substack{\text { a }}}$		登			－
OFFSET	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \stackrel{y}{c} \\ \hline \end{array}$	\％	！	$\stackrel{\square}{4}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	\％	$\stackrel{8}{0}$	$\stackrel{\stackrel{\circ}{\mathrm{i}}}{\stackrel{0}{2}}$	\％

Esion				$\begin{array}{\|l\|l} \hline \stackrel{\circ}{0} \\ \text { 曾 } \\ \hline \end{array}$	总			$\begin{aligned} & \text { 興 } \\ & \text { in } \end{aligned}$	－
Xisting	$\begin{aligned} & \text { 亮 } \\ & \stackrel{\rightharpoonup}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ⿹\zh26灬力 } \\ & \text { id } \end{aligned}$	$\begin{gathered} \tilde{a} \\ \text { 둥 } \\ \text { in } \end{gathered}$	咎		劀		$\begin{aligned} & \text { T⿳亠丷⿵冂⿱十口刂⿱㇒⿻日乚㇒ } \\ & \text { en } \end{aligned}$	－
FSET	$$		$\stackrel{\circ}{0}$	$\begin{aligned} & \stackrel{8}{4} \\ & \hline 1 \end{aligned}$	8	8	$\stackrel{\text { ¢ }}{\substack{\text { c }}}$	잉	\％

CH 280

DFFSET

off

DATUM RL 1021.00

DESIGN		$\begin{aligned} & \text { 笑 } \\ & \stackrel{\oplus}{0} \end{aligned}$	$\begin{aligned} & \text { 镸 } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 毋.0. } \\ & \stackrel{\oplus}{0} \end{aligned}$		它			宫
ExISTING		騖	$\begin{aligned} & \text { 篤 } \\ & \stackrel{0}{0} \end{aligned}$	买		er			管
FSET	̣ib		$\begin{array}{r} \circ \\ \stackrel{\circ}{1} \\ \hline \end{array}$	B	8	8	$\stackrel{\square}{!}$		$\frac{\vdots}{0}$

CH

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

		A ARKHILL ENGINEERS							
		borg running creek－RAZORBACK RD INTERSECTION SECTIONS－SHEET 1 OF 3							
Oescone：	A．M．								
Oram，	A．M．			${ }^{\text {SkECCH }}$	SK4153－021				
Approve．	－	As SHown	A1						3－01－22

CH 600

$\mathrm{N}=6342756.457$ $\mathrm{RL}=1069.546$ DATUM RL 1062.500									
design			$\begin{aligned} & \text { 菐 } \end{aligned}$	$\begin{aligned} & \text { Ein } \\ & \stackrel{i}{0} \\ & \stackrel{0}{2} \end{aligned}$	克 宫	$\begin{aligned} & \text { 或 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\stackrel{\substack{6 \\ \hline 0 \\ \hline \\ \hline}}{0}$	듳
ExISTING		¢		$\begin{aligned} & \text { En } \\ & \text { 兑 } \end{aligned}$	官		－		$\begin{aligned} & \text { 층 } \\ & \text { - } \end{aligned}$
OFFSET		$\stackrel{8}{\square}$	$\begin{aligned} & \circ \\ & \hline \stackrel{\circ}{\dagger} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{0}{4}}$	\％	$\stackrel{\circ}{6}$	\％	$\begin{array}{\|c\|c\|c\|c\|} \hline \stackrel{y}{c} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{6}}{\stackrel{\rightharpoonup}{0}}$

			（A）ARKHILL ENGINEERS borg running creek－razorback rd intersection SECTIONS－SHEET 2 OF 3				
	DESIGNED： A．M． DRAWN： A．M．						
					motme		

$A=1069.19 L$
DATUM RL
1062.50

desion	$\begin{aligned} & \text { 㨽 } \end{aligned}$	$\begin{aligned} & \text { e. } \\ & \stackrel{\omega}{\circ} \end{aligned}$		$\begin{aligned} & \overline{\mathrm{a}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\bar{m}}{\substack{0}}$	$\begin{aligned} & \text { 등 } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { 宮 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \dot{g} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$
ExISTING				$\stackrel{\text { \% }}{\text { ¢ }}$	$\stackrel{\text { d }}{\text { O }}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{o} \end{aligned}$	E	$\begin{aligned} & \text { U! } \\ & \stackrel{\circ}{6} \\ & \stackrel{0}{0} \end{aligned}$	¢
OFFSET	$$	$\begin{aligned} & \text { ob } \\ & \underline{u} \end{aligned}$	$\stackrel{\circ}{0}$	8	-	O	\%	$\stackrel{\square}{6}$	8

CH 640

PRELIMINARY ISSUE NOT FOR CONSTRUCTION

DATUM RL 1053.000
DESIGN FSL

ExISTNG

offset

A ARKHILL ENGINEERS

 RGG RUNING CREEK RAZORBACK RD INTERSECTION
 $\left(\begin{array}{l}\text { EARTHWORKS } \\ \text { AS SALE }_{\text {SHOWN }} \mid \text { SIE }\end{array}\right.$
\qquad

CH 620

Appendix C - Draft Operational Traffic Management Plan

David Pavey Pty Ltd trading as

Pavey Consulting Services
 Specialising in

Traffic Impact Assessments and Transportation Planning
Road Safety, Traffic Management Plans and Traffic Control Plans
Civil and Structural Design
Project Management and Contract Administration
Mediation and Government Relations

Operational Traffic Management Plan Quarry Running Stream

Copyright

© David Pavey Pty Ltd, trading as Pavey Consulting Services 2021
This report has been prepared by David Pavey Pty Ltd. Reproduction without written authority from David Pavey Pty Ltd is prohibited.

Restrictions on Use

This report has been prepared specifically for Borg Group of companies as the client. No part of this report may be referred to or quoted in any way without the express written approval David Pavey Pty Ltd. No party other than Borg Group of Companies may rely upon any representation in this report for any purpose whatsoever, and David Pavey Pty Ltd accepts no liability for any such party relying upon this report

Prepared By

David Pavey

Director
B.E (Civil) Grad Dip LGE. LGE Cert. MAIPM, MAICD, MAITPM

Authorised SafeWork NSW - Prepare a Work Zone Plans - No TCT1017730
Pavey Consulting Services
Email; paveyconsulting@iinet.net.au
Phone: 0419696212
David Pavey Pty Ltd
23 Stanley Street
Merewether
NSW 2291
ABN 12150774413
ACN 150774413

Table of Contents

Page
1.0 INTRODUCTION 5
2.0 LIMITS IF REPORT ERROR! BOOKMARK NOT DEFINED.
3.0 REFERENCES 5
4.0 WAYS TO CONTROL TRAFFIC RISKS 5
Keeping people and vehicles apart 5
Vehicle routes 5
Pedestrian crossings 5
PARKING AREAS 6
Reversing Vehicles 6
LOADING AND UNLOADING VEHICLES 6
SIGNS AND ROAD MARKINGS. 6
LIGHTING 6
5.0 COUNCIL CONSULTATION 6
6.0 SITE LOCATION 6
7.0 TRAFFIC MANAGEMENT PLAN 7
Introduction 7
Objectives 7
Project Description 7
Site Access and Internal Operations 7
Access Arrangements 7
Passenger Vehicles 7
Passenger Vehicles 7
Heavy Vehicles 8
hours of Operation 8
Minimising Vehicle Movements 8
haul Roads 8
Driveway improvements ERror! BOokMARK Not defined.
Monitoring of Product Transport. 8
8.0 DRIVER CODE OF CONDUCT 8
9.0 COMPLIANCE MONITORING 10
Commencement of Traffic Management Plan \& Driver Code of Conduct 10
Monitoring Measures 10

1.0 INTRODUCTION

This document provides an Operational Traffic Management Plan (OTMP) proposed quarry at Running Stream NSW.

2.0 REFERENCES

- Work Health \& Safety Act (NSW) 2011
- Work Health \& Safety Regulations (NSW) 201
- Work Health \& Safety (National Uniform Legislation) Act 2011
- Work Health \& Safety (National Uniform Legislation) Regulations 2011
- Safe Work Australia: Construction Work - Code of Practice (2013)
- Safe Work Australia: General Guide for Workplace Traffic Management (2014)
- Safe Work Australia: Traffic Management: Guide for Construction Work (2014)

3.0 WAYS TO CONTROL TRAFFIC RISKS

Keeping people and vehicles apart

The best way to protect pedestrians is to make sure people and vehicles cannot interact. Where powered mobile plant is used at a workplace, you must ensure it does not collide with pedestrians or other powered mobile plant.

This can be achieved by not allowing vehicles in pedestrian spaces or not allowing pedestrians in vehicle operating areas, for example using overhead walkways.

However, this may not be reasonably practicable in all workplaces. If people and vehicles cannot be separated you should consider using:

- barriers or guardrails at building entrances and exits to stop pedestrians walking in front of vehicles,
- high impact traffic control barriers,
- temporary physical barriers, or
- separate, clearly marked footpaths or walkways e.g. using lines painted on the ground or different coloured surfacing.

Vehicle routes

Vehicle routes at the workplace should have a firm and even surface, be wide and high enough for the largest vehicle using them and be well maintained and free from obstructions. They should be clearly sign-posted to indicate speed limits, traffic calming measures like speed humps and parking areas.

Reducing speed is very important where administrative control measures are the only reasonably practicable approach. Speed limits should be implemented and enforced and traffic calming devices like speed humps considered.

Pedestrian crossings

Pedestrian crossings should be clearly marked with ground markings, lights or signs. If the vehicle route to be crossed is a road or railway consider control measures that will work with those already established by the relevant authority, for example a local council or rail authority.

Both pedestrians and vehicles should have good visibility, for example pallet goods should not be stored in a way that would obscure vision.

Procedures indicating who has right of way at crossings should also be established.

Parking areas

Parking may be needed for workers, visitors, trucks and other vehicles used in the workplace.
Consider setting out the workplace so parking areas:

- are located away from busy work areas and traffic routes,
- have walkways leading to and from parking areas which are separated from vehicles or vehicle routes e.g. use physical controls like barriers or bollards to prevent vehicles from crossing into walking areas, and
- are clearly marked and sign-posted, well-lit and unobstructed.

Reversing vehicles

If reasonably practicable eliminate the need for reversing by using drive-through loading and unloading systems, multi-directional mobile plant or rotating cabins. Where this is not possible consider:

- using devices like reversing sensors, reversing cameras, mirrors, rotating lights or audible reversing alarms,
- using a person to direct the reversing vehicle if they cannot see clearly behind-this person should be in visible contact with the driver at all times and wear high-visibility clothing,
- providing designated clearly marked, signposted and well-lit reversing areas, and
- excluding non-essential workers from the area.

Loading and unloading vehicles

It is important to make sure visitors including visiting drivers are aware of the workplace layout, the route they should take and safe working procedures for the workplace. Provide drivers with safe access to amenities away from loading areas or other vehicular traffic.

Provide effective ways to warn of loading in progress to other plant operators, drivers and pedestrians. Warning devices can include signage, cones, lights, alarms and horns.

Signs and road markings

Clear road markings like reflective paint and signs should be used to alert pedestrians and vehicle operators to traffic hazards in the workplace.

Signs should be provided to indicate exclusion and safety zones, parking areas, speed limits, vehicle crossings and hazards like blind corners, steep gradients and where forklifts are in use.

Lighting

Traffic routes, manoeuvring areas and yards should be well lit with particular attention given to junctions, buildings, walkways and vehicles routes. Where possible they should be designed to avoid extreme light variation, for example drivers moving from bright into dull light or vice versa.

4.0 COUNCIL CONSULTATION

TBC after Council Consultation

5.0 SITE LOCATION

TBC after Development Approval has been obtained.

6.0 TRAFFIC MANAGEMENT PLAN

Introduction

The purpose of this document is to minimise the impacts of the heavy vehicle traffic on Davis Rd, the surrounding properties and on the community and to manage the movement of heavy vehicles using best industry practice.

Objectives

The objectives of this Traffic Management Plan and Driver Code of Conduct are to:
a) Ensure compliance with the conditions,
b) Encourage compliance and acceptance of the Truck Driver Code of Conduct by all heavy vehicle drivers,
c) Minimise the heavy vehicle impacts on the community,
d) Foster an understanding and awareness within the company of community expectations and legislative requirements in regard to heavy vehicle movements,
e) Protect and enhance public safety through compliance with relevant road rules, and f) Increase $\mathrm{OH} \& S$ understanding in relation to fatigue, vehicle operation in public areas and obligation to the general public.

Project Description

TBC after Development Approval has been obtained.

Site Access and Internal Operations

Access Arrangements

Access to the site is controlled by Borg Resources staff. A programmable swipe card/tag will be provided to all employees and regular contractors to activate boom gates and access the weighbridge.

The site speed limit is $15 \mathrm{~km} / \mathrm{h}$ and this will be enforced.

Passenger Vehicles

The suitability of the proposed access driveway with respect to accommodating passenger vehicles is assessed based on guidelines provided within the Australian Standard for OffStreet Car parking (AS2890.1-2004). This publication provides driveway design recommendations based on several site characteristics such as the number and classification of vehicles to be accommodated on-site and the functional role of the frontage road.
It is evident that the proposed combined ingress/egress driveway suitably accords with the design criteria specified within AS2890.1-2004 and is therefore considered to be satisfactory in terms of servicing passenger vehicles.

Passenger Vehicles

Upon entry to the subject site, passenger vehicles will access the at-grade passenger vehicle parking areas.

The parking bays and internal circulation of the parking areas has been designed to accord with the relevant requirements of AS2890.1 and AS2890.6.

The above compliance with the relevant AS2890.1 and AS2890.6- specifications is anticipated to result in safe and efficient internal manoeuvring and parking space
accessibility.
Marked pedestrian paths are provided to guide pedestrians from carparks to reception and office locations.

Signage has been erected to direct all visitors to report to office prior to moving around the site.

Heavy Vehicles

Traffic movements for a range of heavy vehicles has been examined by preparing several swept path plans, which have been overlaid on the site.

This sweep analysis indicates that all heavy vehicles proposed to service the facility are capable of manoeuvring within the site in a safe and efficient manner without any unreasonable encroachment on internal passenger vehicle parking areas or structures. Accordingly, the internal heavy vehicle manoeuvring arrangements are satisfactory.

Hours of Operation

The current approved development is approved to process materials during the following hours:

- 7am to 5pm Monday to Friday,
- 8am to 1 pm Saturdays, and
- No work on Sundays or Public Holidays.

Minimising Vehicle Movements

Traffic movement around the workplace should be minimised as much as possible. This will be achieved where practicable by:

- Controlling entry/exit to the work area by planning or engineering processes (e.g. gates, signage, speed control),
- Developing storage areas so delivery vehicles do not have to cross the site,
- Scheduling work processes to minimise the number of vehicles operating at the same time, and
- Scheduling work processes to minimise the number of vehicles operating while people are moving through an area (e.g. start and finish of shifts).

Haul Roads

TBC after Development Approval has been obtained.

Monitoring of Product Transport

The Proponent shall keep accurate records of:

- The amount of quarry products transported from the site (per calendar month and year),
- The number of laden vehicle movements from the site (per hour, day, week, calendar month and year), and
- Monitor complaints with respect to the usage of Davis Rd and other haul roads.

7.0 DRIVER CODE OF CONDUCT

A driver code of conduct has been development for the site and is included in Appendix C .

This document includes:

Heavy vehicle drivers

- Have undertaken a site induction carried out by an approved member of staff,
- Hold a valid driver's licence for the class of vehicle that they operate,
- Operate the vehicle in a safe manner within and external to the site, and
- Comply with the direction of authorised site personnel when within the site.

Heavy Vehicle Speed

Heavy vehicle drivers need to comply with:

- signposted speed limits on haul routes,
- internally within the site, and
- Drivers and truck operators are to be aware of the "Three Strikes Scheme" introduced by the Roads and Maritime Services which applies to all vehicles over 4.5 tonnes. When a heavy vehicle is detected travelling at $15 \mathrm{~km} / \mathrm{h}$ or more over the posted or relevant heavy vehicle speed limit by a mobile Police unit or fixed speed camera, the Roads and Maritime Services will record a strike against that vehicle. If three strikes are recorded within a three-year period, the Transport for NSW will act to suspend the registration of that vehicle (up to three months).

Heavy Vehicles Driver Fatigue

Fatigue is one of the biggest causes of accidents for heavy vehicle drivers. The Heavy Vehicle Driver Fatigue Reform was therefore developed by the National Transport Commission (NTC) and approved by Ministers from all States and Territories in February 2007.

The heavy vehicle driver fatigue law commenced in NSW on 28 September 2008 and applies to trucks and truck combinations over 12 tonne GVM.

Heavy Vehicle Compression Braking

Compression braking by heavy vehicles is a source of irritation to the community generating many complaints especially at night when residents are especially sensitive to noise.

In some instances, compression braking is required for safety reasons however when passing through or adjacent to residential areas or isolated farmsteads a reduction in the speed of the vehicle is recommended to reduce the instances and severity of compression braking.

Load Covering

Loose material on the road surface has the potential to cause road crashes and vehicle damage.

All trucks arriving at or departing the site whether loaded with material or not are required to have an effective cover over their load for the duration of the trip.

All care is to be taken to ensure that all loose debris from the vehicle body and wheels is removed prior to leaving the site.

Drivers must ensure that following tipping that the tailgate is locked before leaving the site.

Vehicle Departure and Arrival

Trucks should only be scheduled to arrive during operating hours to minimise the need for on street parking.

8.0 COMPLIANCE MONITORING

Commencement of Traffic Management Plan \& Driver Code of Conduct

It is proposed that this Traffic Management Plan will be initiated when the project becomes operational and reviewed after 12 months of operation.

The Driver Code of Conduct is to be signed by individual drivers and authorised representative of Borg Resources at the time when drivers attend their site induction or shortly thereafter.

Monitoring Measures

A formal observation of compliance at three monthly intervals will be undertaken to document any remedial actions with employees, heavy vehicle drivers or haulage companies that may be necessary as a result of these observations.

Appendix D - Draft Driver Code of Conduct

This document sets out the truck driver requirements for all employees a nd contractors to Borg Resources.

DECLARATION

I, the undersigned, hereby agree to abide by Borg Resources' Driver Code of Conduct forthe transportation of timber resourcesto/ from the sites in Oberon in a safe manner.

I have read and understand the requirements outlined in the Code and will, to the best ofmy ability, comply and assist with their implementa tion, requirements and ongoing compliance.

Truck Driver

Full Name:

Signature:
Date:

General Requirements

The Drivers Code of Conduct is distributed to all employee drivers and sub-contractors transporting quary products to and from Running Stream Quary.

The Code would be provided to each driver to read and sign to confim they have understood and pledge to follow the haulage instructions.

Heavy vehicle drivers hauling to and from the subject site must:

- Have read and signed the Drivers Code of Conduct (this document) prior as a condition of their employment;
- Hold a valid driver's lic ense for the class of vehic le that is being operated;
- Operate the vehicle in a safe manner while on site and public road network;
- Comply with the directions of Borg Resources supervision, safety and operational requirementsand nominated Haulage Routes;
- All drivers are to use seat belts when driving;
- All drivers are to drive to the sign posted speed limit, both on public roads, private roadsand within the site.

Site Access

Access to the site is controlled by Borg Resources staff. A programmable swipe card/tag will be provided to all employees and regular contractors to activate boom gates and access the weighbridge.

The site speed limit is $15 \mathrm{~km} / \mathrm{h}$ and this will be enforced.

Heavy Vehic le Haul Routes

All heavy vehicle drivers must adhere to the designated truck routes to/from the site as follows:

- Approach routes:
- Travelon Castlereagh Highway and Razorback Road in westerly direction, tum left into Running Stream Quary.
- Orasdetemined by the Haulage Plan asprovided
- Departure routes:
- Tum right onto Razorback Road and then proceed to Castlereagh Highway
- Orasdetermined by the Haulage Plan asprovided

Heavy Vehicle Speed

Truck drivers must comply with the Australian Road Rules with travelling along public roads.

Drivers are to observe the posted speed limits and adjust speed appropriately to suit theroad and weather conditions at the time.

Speed limits on route to the site can between $40 \mathrm{~km} / \mathrm{hr}$ (school zones) up to $100 \mathrm{~km} / \mathrm{hr}$. The maximum speed that a vehicle must travel is the signposted speed. Waming signsindic ating a reduction in speed ahead must also be obeyed. These signs are shown below.

Typic al NSW Road Speed LimitSigns

Speed Reduction Ahead Waming Sign

The speed limit within the site is $15 \mathrm{~km} / \mathrm{hr}$ (unless sign posted otherwise in an area) which is to bestric tly maintained.

Heavy Vehic les Driver Fatigue

The heavy vehicle driver fatigues law commenced in NSW in 2008 and appliesto trucks and truck combinationsover 8 tonnesG VM (however, Ministerial Exemption Notices may a pply).

Under the law, industry has the choice of operating under three fatigue management schemes, namely:

1. Standard Hours of Operation - Borg Resources limited to 13 hours perday
2. Basic Fatigue Management (BFM)
3. Advanced Fatigue management (AFM).

All heavy vehicle drivers associated with the Resources team are to be aware of their adopted fatigue management scheme and operate within its requirements.

Heavy Vehicle Compression Braking

Compression braking on route to or hauling away from site should only be used when required and for safety reasons. It is not to be used in areas where prohibited.

Heavy Vehic le Noise

Impulsive and Tonal noise generating activities shall not be undertaken at site outside normal operating hours.

Load Covering (where applicable)

All loaded trucks arriving at and departing from the site are required to have an effective cover over their load for the duration of the joumey. The loadcover may be removed only upon a mival at the destination (ie. at the site).

Care must be taken to ensure that all loose debris from vehiclesand wheels is removed prior to exiting the site.

Site management is to monitor loose material on the side of the haul route and take appropriate action regularly.

Other Safety Considerations along the Haul Route

Heavy vehicle drivers should be aware of the following:

- Load restraint remains the responsibility of every driver and failure to restrain a load will result in personal fines.
- Concealed driveways - drivers are to drive with caution around any signed concealed driveways
- Adverse weather safety - drivers should adjust their driving speed to suit weather conditions at the time. Be particularly a ware of hazardous driving conditions for all road users in these conditions.
- Do not cross water courses when the water depth is above 100 mm , report the situation to your manager to make altemative route a rrangements.
- Remember, some of our truckshave signs on the rear trailer a dvising motorists of our safe driver practices, plus contact details and all have a registration number and your driving behaviour, good orpoor, can be reported to Borg management.

