

Mudgee 5MW Solar Farm – Geotechnical Investigation

Job No.: B20354

Submitted to: Engie Electrical & Communications

171 Grange Road

Fairfield, VIC 3078

Attn: Brett Ferris

Report No.: B20354

Engie Electrical & Communications – Mudgee 5MW Solar Farm

REVISION CONTROL

Revision	Date	Details	Prepared By	Reviewed By
00	08/09/2020	Draft	A. Drösemeyer	D. Clarkson

Contents

1		INTR	ODU	ICTION	5
2		SCO	PE OI	F INVESTIGATION	5
	2.1	L	Site	Description	6
	2.2	2	Desł	< Study	6
	2.3	3	Regi	onal Geology	7
		2.3.1	<u>_</u>	Acid Sulphate Maps	7
		2.3.2	2	Groundwater Bores	8
		2.3.3	5	Topography	8
	2.4	ł	Field	dwork	8
		2.4.1	_	Service Location	8
		2.4.2	2	GPS	9
		2.4.3	3	Boreholes	9
	2.5	5	Sam	pling	9
	2.6	5	In-Si	tu Testing	9
		2.6.1	_	Standard Penetration Testing	9
		2.6.2	2	Electrical Resistivity Testing	9
	2.7	7	Labo	pratory Testing1	0
3		EXIS	TING	SUBSURFACE CONDITIONS1	1
	3.1	L	Expl	oratory Hole Summary1	1
	3.2	2	Grou	undwater1	2
4		FIELD	D TES	ST RESULTS1	2
5		LABC	ORAT	ORY TEST RESULTS	3
6		GEO [.]	TECH	INICAL ASSESSMENT1	4
	6.1	L	Site	Classification1	4
	6.2	2	Four	ndations1	4
		6.2.1	_	Geotechnical Design Parameters1	5
		6.2.2	2	Geotechnical Strength Reduction Factor (AS2159)1	6
		6.2.3	3	Foundation Settlements1	6
		6.2.4	ŀ	Aggressive Soils1	6
7		EXCA	AVAT	ION AND STABILITY1	7
	7.1	L	Soil.		7
	7.2	2	Rocl	K1	7
8		EART	THW	ORKS1	7
М	:\20	020\E	32035	54-Engie Electrical & Communications-Mudgee 5MW Solar Farm-Geotechnical	

Drilling\Report\B20354 Draft GI Report.docx

Page | 3

8.	1	Re-use of Site Material1	7
9	CON	CLUSION1	7

Figures

Figure 1: Site Location	. 6
Figure 2: Geology Map Extract Overlay – Dubbo 1:250,000 Sheet	.7
Figure 3: Acid Sulphate Risk Map	.8

Tables

Table 1: Borehole Scope	5
Table 2: Summary of Geology	7
Table 3: Groundwater Data	8
Table 4: Summary of Laboratory Tests	10
Table 5: Summary of Boreholes	11
Table 6: Summary of Electrical Resistivity Test Results – North Array	12
Table 7: Summary of Electrical Resistivity Test Results – South Array	12
Table 8: Laboratory Test Results – Classification	13
Table 9: Laboratory Test Results – Compaction & CBR	13
Table 10: Laboratory Test Results – Soil Chemical Properties	13
Table 11: Estimated Soil Geotechnical Engineering Parameters	15
Table 12: Shallow Footing Bearing Pressures	15
Table 13: Pile Design Parameters	15

Appendices

Appendix A –	General Notes
--------------	---------------

- Appendix B Site Plan
- Appendix C Exploratory Hole Logs
- Appendix D Laboratory Test Results

MACQUARIE GEOŢECH

1 INTRODUCTION

At the request of Brett Ferris from Engie Electrical & Communications, Macquarie Geotechnical (MG) has carried out a Geotechnical Investigation for the proposed 5MW Solar Farm project near Mudgee, NSW.

The objective of the investigation is to provide a Geotechnical Interpretation Investigation Report for a proposed solar farm.

The comments and opinions expressed in this report are based on the ground conditions encountered during the site work including the results of tests carried out in the field and in the laboratory. However, there may be special conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report.

2 SCOPE OF INVESTIGATION

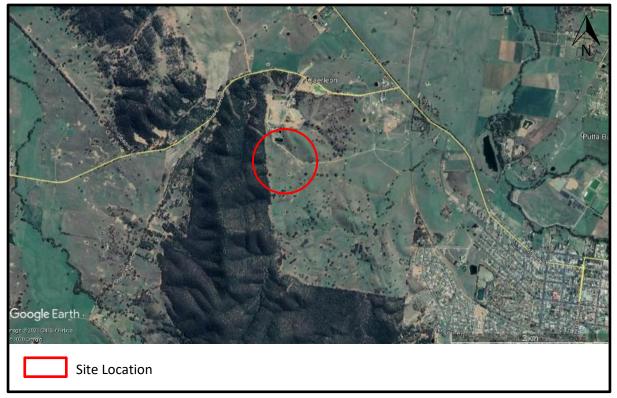
Undertake a desk study of the site to confirm the likely geological conditions of the site and to develop a geological model for the site.

Undertake Dial Before You Dig (DBYD) Search.

Mobilisation of a drill rig for drilling, logging and sampling of five (5) boreholes as per Table 1 below. In-situ testing comprised of Standard Penetration Testing (SPT) at selected intervals.

Hole ID	Eastings	Northings	Depth (m)	Termination Remark	
BH-01	738986.66	6392571.80	2.70	Refusal	
BH-02	738925.71	6392702.55	5.00	Target depth	
BH-03	738839.76	6392551.16	4.84	Refusal	
BH-04	738689.55	6392533.20	5.00	Target depth	
BH-05	738646.59	6392831.43	1.65	Refusal	

Samples were taken at selected intervals and at every change of strata to allow for laboratory testing at our NATA accredited laboratory in Bathurst. Testing comprised of the following:

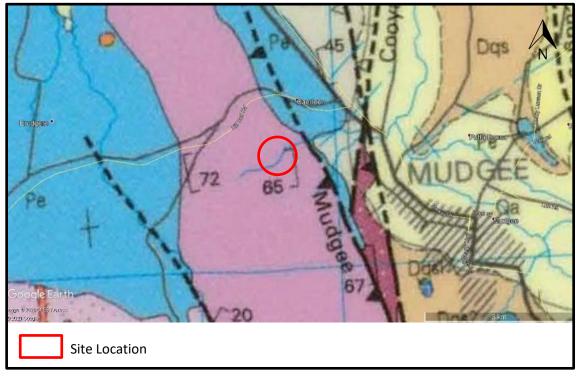

- Six (6) Moisture Content Tests
- Three (3) Atterberg Limit Tests
- Three (3) Linear Shrink Tests
- Three (3) Shrink Swell Tests
- Three (3) Particle Size Distribution (Wash) Tests
- Four (4) Maximum Dry Density MDD Tests
- Four (4) California Bearing Ratio CBR Tests
- Three (3) Soil Chemical Properties Suite Tests

2.1 Site Description

The project areas are located at Caerleon, approximately 9km North West of Mudgee, NSW.

The proposed site is situated within council land south of the sewerage treatment plant.

Figure 1: Site Location


2.2 Desk Study

A desk study was undertaken using readily available geological and geotechnical information and included the following:

- Dubbo 1:250,000
- Previous Geotechnical Investigations undertaken within the study area
- NSW Department of Primary Industries Groundwater Bore Data
- ASRIS/CSIRO
- Google Earth

2.3 Regional Geology

The 1:250,000 Geological map sheet extract Dubbo is shown in Figure 2 below:

Figure 2: Geology Map Extract Overlay – Dubbo 1:250,000 Sheet

With reference to the 1:250,000 Geological map sheet extract Dubbo, the site is underlain by the following:

Table	2:	Summary	of G	eology
	_	o aa. y		201001

Geological Symbol	Group	Lithology
Ssb	Chesleigh Group	Biraganbil Formation: Quartz-lithic sandstone, slate, mudstone.

2.3.1 Acid Sulphate Maps

Reference is made to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Australian Acid Sulphate Soils and presented in Figure 3 below:

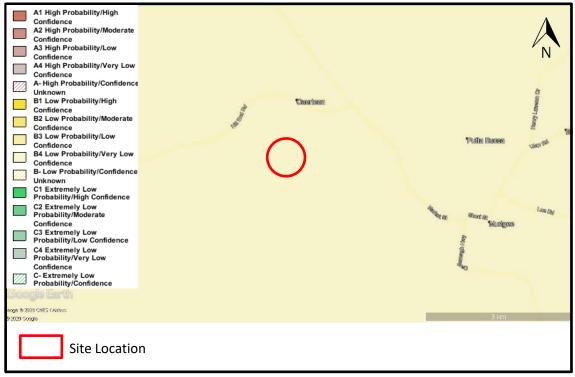


Figure 3: Acid Sulphate Risk Map

The acid sulphate map indicates a low probability of acid sulphate soils within the site.

2.3.2 Groundwater Bores

Table 3: Groundwater Data				
Bore ID	Depth (m)	Geological Strata		
GW804773 (Approx. 250m from site)	0.00 - 2.00	Clay		
	2.00 - 28.00	Sandstone		

2.3.3 Topography

The site topography of the investigated area is slightly undulating with elevation ranging from approximately 495 to 525m AHD.

2.4 Fieldwork

Fieldwork was undertaken on the 20th and 21st August 2020 by a Driller and an Engineering Geologist from our Bathurst office. The fieldwork was undertaken in accordance with our proposal and AS1726 Geotechnical Site Investigation.

2.4.1 Service Location

Macquarie Geotechnical obtained underground services and utility plans through 'Dial Before You Dig (DBYD) services.

2.4.2 GPS

Test locations were surveyed using a handheld GPS with co-ordinates recorded. The GPS co-ordinates were recorded in MGA Zone 55H format and elevations in Australian Height Datum (AHD).

2.4.3 Boreholes

The borehole was drilled at a location nominated by Engie Electrical & Communications and is summarised in Table 1.

A truck mounted Christie drill rig was used to drill five (5) boreholes up to depths of 5.00m. Drilling comprised of a 114mm diameter solid flight auger and 250mm diameter bulk auger up to depths of 1.00m. In situ testing comprised of Standard Penetration Tests (SPT) at 1.50m intervals.

The boreholes were reinstated with arising's upon completion.

The borehole logs are presented in Appendix C.

2.5 Sampling

Sampling was undertaken in accordance with AS1289 1.2.1 and as defined in the proposal and considered the engineering requirements of the investigation and the nature of the materials encountered. Samples were returned to our NATA accredited laboratory in Bathurst for testing.

2.6 In-Situ Testing

In-situ testing as specified by our proposal was carried out in selected exploratory holes in accordance with the techniques outlined in the relevant Australian Standards and Macquarie Geotech's Quality procedures. The results are presented on the relevant exploratory hole log in Appendix C.

2.6.1 Standard Penetration Testing

Standard Penetration Tests (SPT) was carried out in the boreholes with techniques outlined in AS1289 6.3.1 in order to determine the relative density and consistency of the strata encountered. The "N" value (number of blows per 300mm penetration) or the blow count/penetration was recorded for each test.

2.6.2 Electrical Resistivity Testing

Earth resistivity testing was undertaken using a DET4TC2 Megger Earth Tester in accordance with the four (4) pin Wenner method. Electrodes were inserted into the ground along an orthogonal traverse (R1 to R2) with an E-W direction and N-S direction. The electrode spacing ranged between 0.5m and 16m.

The testing was undertaken in accordance with ASTM G57-06 Wenner Electrical Sounding Method.

A summary of the results is included in Section 4.

Laboratory Testing 2.7

The samples were returned to Macquarie Geotechnical NATA accredited laboratory at Bathurst for further assessment and testing. The laboratory tests were carried out as per the proposal.

Hole ID	Depth (m)	Laboratory Tests
		AS1289 2.1.1 Moisture Content
		AS1289 3.1.1 Atterberg Limits
	0.10 0.50	AS1289 3.4.1 Linear Shrink
	0.10 - 0.50	AS1289 3.6.1 Particle Size Distribution (Wash)
		AS1289 5.1.1 Maximum Dry Density - MDD
BH-01		AS1289 6.1.1 California Bearing Ratio - CBR
		AS1289 4.2.1 Sulphate Content
	0.50 - 0.95	AS1289 4.3.1 pH Value
	0.50 - 0.95	EC Electrical Conductivity
		T1010 Chloride Content
	1.00 - 1.50	AS1289 7.1.1 Shrink Swell
		AS1289 2.1.1 Moisture Content
	0.50 - 1.00	AS1289 5.1.1 Maximum Dry Density - MDD
		AS1289 6.1.1 California Bearing Ratio - CBR
BH-02	1.00 - 1.50	AS1289 7.1.1 Shrink Swell
BH-02		AS1289 2.1.1 Moisture Content
	2.50 - 3.00	AS1289 3.1.1 Atterberg Limits
	2.30 - 3.00	AS1289 3.4.1 Linear Shrink
		AS1289 3.6.1 Particle Size Distribution (Wash)
		AS1289 2.1.1 Moisture Content
	0.10 - 0.50	AS1289 5.1.1 Maximum Dry Density - MDD
		AS1289 6.1.1 California Bearing Ratio - CBR
		AS1289 2.1.1 Moisture Content
BH-03		AS1289 3.1.1 Atterberg Limits
BI1-05		AS1289 3.4.1 Linear Shrink
	1.50 - 1.95	AS1289 4.2.1 Sulphate Content
		AS1289 4.3.1 pH Value
		EC Electrical Conductivity
		T1010 Chloride Content
BH-04	1.00 - 1.50	AS1289 7.1.1 Shrink Swell

Table 4: Summary of Laboratory Tests

M:\2020\B20354-Engie Electrical & Communications-Mudgee 5MW Solar Farm-Geotechnical Drilling\Report\B20354 Draft GI Report.docx

Hole ID	Depth (m)	Laboratory Tests
	1.00 - 1.95	AS1289 3.6.1 Particle Size Distribution (Wash)
	2.00 2.45	AS1289 4.2.1 Sulphate Content
BH-04		AS1289 4.3.1 pH Value
	3.00 - 3.45	EC Electrical Conductivity
		T1010 Chloride Content
		AS1289 2.1.1 Moisture Content
BH-05	0.50 - 1.00	AS1289 5.1.1 Maximum Dry Density - MDD
		AS1289 6.1.1 California Bearing Ratio - CBR

3 EXISTING SUBSURFACE CONDITIONS

The subsurface conditions encountered in the borehole is presented in detail in the attached borehole log (refer Appendix C). The subsurface conditions encountered in the borehole is broadly summarised in Table 5 below.

3.1 Exploratory Hole Summary

-	BH-01	BH-02	BH-03	BH-04	BH-05
Material Description			Depth (m)		
Silty CLAY (Topsoil)	0.00 - 0.10	0.00-0.10	0.00-0.10	0.00 - 0.10	0.00 - 0.10
Sandy CLAY trace gravel (residual Soil)	0.10 - 0.50	-	-	-	_
Silty CLAY (Residual Soil)	0.50 - 1.70	0.10 - 2.50	0.10 - 2.40	-	0.10 - 0.50
Silty Sandy CLAY (Residual Soil)	-	-	2.40 - 4.84	0.10 - 5.00	-
Clayey Sandy GRAVEL (Residual Soil)	-	-	-	-	0.50 - 1.20
Sandy CLAY with gravel (Residual soil)	-	2.50 - 3.00	-	-	-
Silty Gravelly CLAY (XW Material)	1.70 - 2.70	3.00 - 5.00	-	-	-
Silty Clayey GRAVEL (XW Material)	-	-	-	-	1.20 - 1.65
Total Depth (m)	2.70 (R)	5.00 (LOI)	4.84 (R)	5.00 (LOI)	1.65 (R)
Groundwater Observation (m)	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO

Table 5: Summary of Boreholes

Note: Please refer to borehole logs in Appendix C for detailed descriptions.

LOI – Limit of Investigation, R – Refusal;

NFGWO – No Free Ground Water Observed.

3.2 Groundwater

The comments on groundwater are based on the observations made at the time of the investigation. Groundwater was not observed in the borehole at the time of investigation. It is possible that elevated groundwater levels during wet periods may occur.

Seasonal variation in ground water may be encountered and shall be considered as part of design process.

4 FIELD TEST RESULTS

The summary of electrical resistivity test results is shown in tables 6 and 7 below.

Flastwada (masing (m)	Apparent Resistivity (Ohm)			
Electrode Spacing (m)	E/W	N/S		
1.0	-	50.3		
2.0	-	25.1		
4.0	-	25.1		
8.0	-	50.3		
12.0	-	75.4		
16.0	-	100.5		

Table 6: Summary of Electrical Resistivity Test Results – North Array

<u>Notes</u>: 1. Apparent Resistivity $2\rho\pi aR$; where a = meters and R = ohms

2. The calculated earth and thermal resistivity values are based on the assumption of homogeneous ground conditions from the surface to a depth approximately equal to the electrode spacing. Non-homogeneous ground conditions may affect the calculated earth resistivity values. The electrical resistivity of the ground can be affected by moisture; therefore resistivity of the upper soil profile may change in accordance with the prevailing moisture conditions.

Table 7: Summary of Electrical Resistivity Test Results – South Array

Electrode Spacing (m)	Apparent Resistivity (Ohm)			
Electrode Spacing (m)	E/W	N/S		
1.0	238.8	-		
2.0	62.8	-		
4.0	25.1	-		
8.0	50.3	-		
12.0	75.4	-		

<u>Notes</u>: 1. Apparent Resistivity $2p\pi aR$; where a = meters and R = ohms

2. The calculated earth and thermal resistivity values are based on the assumption of homogeneous ground conditions from the surface to a depth approximately equal to the electrode spacing. Non-homogeneous ground conditions may affect the calculated earth resistivity values. The electrical resistivity of the ground can be affected by moisture; therefore resistivity of the upper soil profile may change in accordance with the prevailing moisture conditions.

MACQUARIE GEOŢECH

5 LABORATORY TEST RESULTS

The Laboratory tests were carried out on the samples nominated by Macquarie Geotech. The test results are summarised in Tables 8 to 10 below.

liala	Dauth	Comula	Moisture	Att	erberg Liı	nits	Linear	Shrink
Hole ID	Depth (m)	Sample Description (USCS)	Content (%)	LL (%)	PL (%)	РІ (%)	Shrinkage (%)	Swell Index (ISS)
BH-01	0.10 - 0.50	Sandy CLAY trace gravel	15.8	31	14	17	9.0	-
	1.00 - 1.50	Silty CLAY*	-	-	-	-	-	0.3
	0.50 - 1.00	Silty CLAY*	14.5	-	-	-	-	-
BH-02	1.00 - 1.50	Silty CLAY*	-	-	-	-	-	0.5
	2.50 - 3.00	Sandy CLAY with gravel	13.3	29	16	13	7.5	-
BH-03	0.10 - 0.50	Sandy CLAY*	15.5	-	-	-	-	-
БП-05	1.50 – 1.95	Sandy CLAY*	9.8	27	17	10	4.0	-
BH-04	1.00 - 1.50	Silty sandy CLAY*	-	-	-	-	-	0.5
BH-05	0.50 - 1.00	Sandy GRAVEL*	10.5	-	-	-	-	-

Table 8: Laboratory Test Results – Classification

Note: USCS – Unified Soil Classification System; LL – Liquid Limit; PL – Plastic Limit; PI – Plasticity Index; * Visual description

Table 9: Laboratory Test Results – Compaction & CBR

Hole		Sample Description	Field	Calif	ornia Bea	ring Ratio	(CBR)
ID	Depth (m)	(USCS)	Moisture Content (%)	MDD (t/m³)	OMC (%)	CBR (%)	CBR Swell (%)
BH-01	0.10 - 0.50	Sandy CLAY trace gravel	15.3	1.87	15.8	3.5	0.0
BH-02	0.50 - 1.00	Silty CLAY*	15.0	1.87	14.4	5.0	0.7
BH-03	0.10 - 0.50	Sandy GRAVEL*	16.7	1.82	15.3	5.0	0.4
BH-05	0.50 - 1.00	Sandy GRAVEL*	9.8	2.02	11.8	15.0	0.2

Note: USCS – Unified Soil Classification System; MDD – Maximum Dry Density; OMC – Optimum Moisture Content; * Visual description

Table 10: Laboratory Test Results – Soil Chemical Properties

				Soil Chemical P	roperties (SCP)	
Hole ID	Depth (m)	Sample Description*	рН	SO₄ (ppm)	Cl (ppm)	Electrical Conductivity (uS/cm)
BH-01	0.50 - 0.95	Sandy silty CLAY*	10.1	40.9	170.6	640.0
BH-03	1.50 - 1.95	Sandy silty CLAY*	9.1	31.7	93.1	70.4
BH-04	3.00 - 3.45	Sandy silty CLAY*	9.4	26.6	59.9	121.0

Note: * Visual description; SO_4 – Sulphate, Cl – Chloride.

M:\2020\B20354-Engie Electrical & Communications-Mudgee 5MW Solar Farm-Geotechnical Drilling\Report\B20354 Draft GI Report.docx P a g e | **13**

MACQUARIE GEOŢECH

6 GEOTECHNICAL ASSESSMENT

6.1 Site Classification

The classification of a site involves a number of geotechnical factors such as depth of bedrock, the nature and extent of subsurface soils and any specific problems (slope stability, soft soils, filling, reactivity, etc).

In accordance with AS2870 2011 the proposed development site will have an anticipated surface movement (Ys) of **20-30mm** and is classified as "**Class M**".

An appropriate footing system should be designed in accordance with the above code to accommodate these anticipated movements. The possibility of additional movements, due to abnormal moisture variations, should be minimised by proper "site management" procedures.

It should be noted that this assessment is based on site conditions being represented by the natural soil profile. Any change in conditions noted during development, including cut or fill should be referred to Macquarie Geotechnical for appropriate inspection and assessment.

The above classifications, based on AS2870 which relates to construction of residential dwellings, is not technically correct for the type of industrial structures proposed and therefore it is given as a guide only with respect to soil reactivity.

Soil reactivity is expected to govern the serviceability of shallow footings at this site, which will be subject to seasonal shrink/swell movement of the reactive founding soils. Based on a classification of **M**, shallow spread footings founded in residual clay soils may experience seasonal movement of up to **30 mm**.

6.2 Foundations

The investigation indicates that the ground conditions generally comprised of residual soils overlying weathered sedimentary sequences.

6.2.1 Geotechnical Design Parameters

Based on our investigation, and our experience in this region, we recommend the following geotechnical design parameters:

Depth	Soil Description	Unit	_	of Friction grees)	Cohes	ion (kPa)	Concrete to Soil Friction
(m)	Son Description	Weight (kN/m³)	Drained φ'	Undrained Ф	Drained c'	Undrained Cu	Angle δ (degrees)
0.10 - 2.50	Sandy CLAY/ Silty CLAY – Stiff	19	26	-	0	50	20
1.00 - 4.00	Sandy CLAY/ Silty CLAY – Very Stiff	19	29	-	0	100	22
1.50 - 5.00	Sandy CLAY / Silty Gravelly CLAY – Hard (XW Claystone)	20	32	-	0	200	25
BH05 0.50 – 1.20	Clayey Sandy GRAVEL – Medium Dense	20	32	32	0	-	25
BH05 1.20 – 1.65	Silty Clayey GRAVEL (XW material)	21	40	40	0	-	32

Table 11: Estimated Soil Geotechnical Engineering Parameters

Table 12: Shallow Footing Bearing Pressures

Depth (m)	Soil Description	Allowable Bearing Pressure (kPa)	Ultimate Bearing Pressure (kPa)	Modulus of Subgrade Reaction (MN/m³)
0.10 - 2.50	Sandy CLAY/ Silty CLAY – Stiff	85	255	3
1.00 - 4.00	Sandy CLAY/ Silty CLAY — Very Stiff	170	510	7
1.50 - 5.00	Sandy CLAY / Silty Gravelly CLAY – Hard (XW Claystone)	340	1020	14
BH05 0.50 – 1.20	Clayey Sandy GRAVEL – Medium Dense	200	600	8
BH05 1.20 – 1.65	Silty Clayey GRAVEL (XW material)	500	1500	20

Note: Preliminary design parameters to be confirmed by a detailed design analysis.

Table 13: Pile Design Parameters

Depth (m)	Soil Description	Ultimate End Bearing Capacity (kPa)	Ultimate Shaft Adhesion (kPa)		f Subgrade MN/m³) Ks Horizontal
1.00 - 4.00	Sandy CLAY/ Silty CLAY – Very Stiff	-	30	12	9
1.50 - 5.00	Sandy CLAY / Silty Gravelly CLAY – Hard (XW Claystone)	1800	60	24	18

Note: Preliminary design parameters to be confirmed by a detailed design analysis.

Pile design parameters based on bored piles.

A bearing capacity factor Nc equal to 9 for clay can be used provided that the pile has been embedded at least to a depth of five diameters into the bearing stratum.

M:\2020\B20354-Engie Electrical & Communications-Mudgee 5MW Solar Farm-Geotechnical Drilling\Report\B20354 Draft GI Report.docx

Additional investigation should be undertaken for provision of deeper soil parameters.

For foundations bearing on soil or rock, weaker soil layers or weaker / fractured zones of rock present below the base of the foundation should be taken into account in the design of the foundation.

6.2.2 Geotechnical Strength Reduction Factor (AS2159)

The geotechnical strength reduction factor for pile design is defined in the Piling Code. Selection of the geotechnical strength reduction factor (ϕ_g) is based on a series of individual risk ratings (IRR) which are weighted and lead to an average risk rating (ARR). The individual risk ratings and final value of (ϕ_g) depend on the following factors:

- Site: the type, quantity and quality of testing.
- Design: design methods and parameter selection.
- Installation: construction control and monitoring.
- Pile testing regime
- Redundancy.

Without clear details about the pile type, design method, testing regime and other construction factors it is not possible to calculate the appropriate (ϕ_g) value. Assuming no pile testing, limited specialist geotechnical supervision during construction, and the limited/basic investigation and testing, an ϕ_g value of 0.45 is considered appropriate.

Nevertheless, with geotechnical supervision and pile integrity testing ϕ_g value can be increase to 0.52.

6.2.3 Foundation Settlements

For shallow or deep foundations bearing on the residual or extremely weathered soils the total and differential settlements are expected to be within 25mm provided that the allowable bearing capacities are not exceeded.

6.2.4 Aggressive Soils

We refer to Table 6.4.2 (c) Exposure Classification for Concrete Piles AS2159 – 2009 'Piling – Design and Installation'.

The soil condition is classified as 'Condition – B'. The test results indicate low levels of Sulfates (26.6-40.9 ppm), Chlorides (59.9-170.6 ppm) and a pH (9.1-10.1). Therefore the soil at this site is non-aggressive.

MACQUARIE GEOTECH

7 EXCAVATION AND STABILITY

7.1 Soil

The soils at the site comprised predominately residual and extremely weathered materials and should present no excavation difficulty. For temporary work conditions, benching or slope angles of 1V:1H is considered appropriate for the cohesive residual and extremely weathered materials (Boreholes BH01 to BH04). For temporary work conditions, slope angles of 1V:1H is considered appropriate for the granular residual and extremely weathered materials (Boreholes BH05). For permanent conditions, slope angles of 1V:2H is considered appropriate.

7.2 Rock

Bedrock was not encountered in the boreholes. However, auger refusal was encountered at boreholes BH01, BH03 and BH05 at depths ranging from 1.65m to 2.70m below ground level.

8 EARTHWORKS

8.1 Re-use of Site Material

The majority of the site won material from the soil cuttings is considered to be suitable for use as general fill material. If the material is proposed to be used as structural fill within the permanent works then some blending of the material with coarser particle sizes may be required to comply with earthwork specification requirements.

9 CONCLUSION

The findings of our report were based on our fieldwork, in-situ testing, laboratory testing, technical assessment and local knowledge for this site.

We trust the foregoing is sufficient for your present purposes, and if you have any questions please contact the undersigned.

Yours sincerely,

Aloésio Drösemeyer Geotechnical Engineer MSc (Geotechnical)

David Clarkson Senior Geotechnical Engineer BEng MSc MIEAust

Attached:Limitations of Geotechnical Site InvestigationReferences:Australian Standard 1726 – 2017 Geotechnical Site Investigations

M:\2020\B20354-Engie Electrical & Communications-Mudgee 5MW Solar Farm-Geotechnical Drilling\Report\B20354 Draft GI Report.docx P a g e | **17**

LIMITATIONS OF GEOTECHNICAL SITE INVESTIGATION

Scope of Services

This report has been prepared for the Client in accordance with the Services Engagement Form (SEF), between the Client and Macquarie Geotechnical.

Reliance on Data

Macquarie Geotechnical has relied upon data and other information provided by the Client and other individuals. Macquarie Geotechnical has not verified the accuracy or completeness of the data, except as otherwise stated in the report. Recommendations in the report are based on the data.

Macquarie Geotechnical will not be liable in relation to incorrect recommendations should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed.

Geotechnical Investigation

Findings of Geotechnical Investigations are based extensively on judgment and experience. Geotechnical reports are prepared to meet the specific needs of individual clients. This report was prepared expressly for the Client and expressly for the Clients purposes.

This report is based on a subsurface investigation, which was designed for project-specific factors. Unless further geotechnical advice is obtained this report cannot be applied to an adjacent site nor can it be used when the nature of any proposed development is changed.

Limitations of Site investigation

As a result of the limited number of sub-surface excavations or boreholes there is the possibility that variations may occur between test locations. The investigation undertaken is an estimate of the general profile of the subsurface conditions. The data derived from the investigation and laboratory testing are extrapolated across the site to form a geological model. This geological model infers the subsurface conditions and their likely behavior with regard to the proposed development.

The actual conditions at the site might differ from those inferred to exist.

No subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

Time Dependence

This report is based on conditions, which existed at the time of subsurface exploration. Construction operations at or adjacent to the site, and natural events such as floods, or groundwater fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report.

Macquarie Geotechnical should be kept appraised of any such events, and should be consulted for further geotechnical advice if any changes are noted.

Avoid Misinterpretation

A geotechnical engineer or engineering geologist should be retained to work with other design professionals explaining relevant geotechnical findings and in reviewing the adequacy of their plans and specifications relative to geotechnical issues.

No part of this report should be separated from the Final Report.

Sub-surface Logs

Sub-surface logs are developed by geoscientific professionals based upon their interpretation of field logs and laboratory evaluation of field samples. These logs should not under any circumstances be redrawn for inclusion in any drawings.

Geotechnical Involvement During Construction

During construction, excavation frequently exposes subsurface conditions. Geotechnical consultants should be retained through the construction stage, to identify variations if they are exposed.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendations and should make their own enquiries and obtain independent advice in relation to such matters

Macquarie Geotechnical assumes no responsibility and will not be liable to any other person or organisations for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisations arising from matters dealt with or conclusions expressed in the report.

Other limitations

Macquarie Geotechnical will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Other Information

For further information reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, 1987.

Geotechnical Explanatory Notes

Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer as follows:

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as, sieve analysis, liquid limit and plasticity index.

USC Symbol	Description
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
MH	Silt of high plasticity
СН	Clay of high plasticity
ОН	Organic soil of high plasticity
Pt	Peaty Soil

MOISTURE CONDITION

- Dry Cohesive soils are friable or powdery Cohesionless soil grains are free-running
- Moist Soil feels cool, darkened in colour Cohesive soils can be moulded Cohesionless soil grains tend to adhere
- Wet Cohesive soils usually weakened Free water forms on hands when handling

For cohesive soils the following codes may also be used:

MC>PL	Moisture Content greater than the Plastic
	Limit.
MC~PL	Moisture Content near the Plastic Limit.
MC <pl< td=""><td>Moisture Content less than the Plastic</td></pl<>	Moisture Content less than the Plastic
	Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows:

Description of Plasticity	LL (%)
Low	<35
Medium	35 to 50
High	>50

COHESIVE SOILS – CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by the pocket penetrometer values and by resistance to deformation to hand moulding.

A Pocket Penetrometer may be used in the field or the laboratory to provide approximate assessment of unconfined compressive strength of cohesive soils. The values are recorded in kPa, as follows:

Strength	Symbol	Pocket Penetrometer Reading (kPa)
Very	VS	< 25
Soft		
Soft	S	20 to 50
Firm	F	50 to 100
Stiff	St	100 to 200
Very	VSt	200 to 400
Stiff		
Hard	Н	> 400

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) 'N' values. Other condition terms, such as friable, powdery or crumbly may also be used.

The Standard Penetration Test (SPT) is carried out in accordance with AS 1289, 6.3.1. For completed tests the number of blows required to drive the split spoon sampler 300 mm are recorded as the N value. For incomplete tests the number of blows and the penetration beyond the seating depth of 150 mm are recorded. If the 150 mm seating penetration is not achieved the number of blows to achieve the measured penetration is recorded. SPT correlations may be subject to corrections for overburden pressure and equipment type.

Term	Symbol	Density Index	N Value (blows/0.3 m)
Very Loose	VL	0 to 15	0 to 4
Loose	L	15 to 35	4 to 10
Medium Dense	MD	35 to 65	10 to 30
Dense	D	65 to 85	30 to 50
Very Dense	VD	>85	>50

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 μm to 2.36 mm
	medium	200 µm to 600 µm
	fine	75 μm to 200 μm

Rock Description

The rock is described with strength and weathering symbols as shown below. Other features such as bedding and dip angle are given.

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

RQD (%) = Sum of Axial lengths of core > 100mm long total length considered

TCR (%) = length of core recovered length of core run

ROCK STRENGTH

Rock strength is described using AS1726 and ISRM – Commission on Standardisation of Laboratory and Field Tests, "Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index", as follows:

Term	Symbol	Point Load Index Is(50) (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	Μ	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	>10

ROCK MATERIAL WEATHERING

Rock weathering is described using the following abbreviation and definitions used in AS1726:

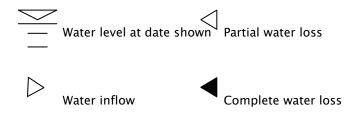
Abbreviation	Term	
RS	Residual soil	
XW	Extremely weathered	
DW	Distinctly weathered	
HW	Highly weathered	
MW	Moderately weathered	
SW	Slightly weathered	
FR	Fresh	

DEFECT SPACING/BEDDING THICKNESS

Measured at right angles to defects of same set or bedding.

Term	Defect Spacing	Bedding	
Extremely closely spaced	<6 mm	Thinly Laminated	
	6 to 20 mm	Laminated	
Very closely spaced	20 to 60 mm	Very Thin	
Closely spaced	0.06 to 0.2 m	Thin	
Moderately widely spaced	0.2 to 0.6 m	Medium	
Widely spaced	0.6 to 2 m	Thick	
Very widely spaced	>2 m	Very Thick	

DEFECT DESCRIPTION

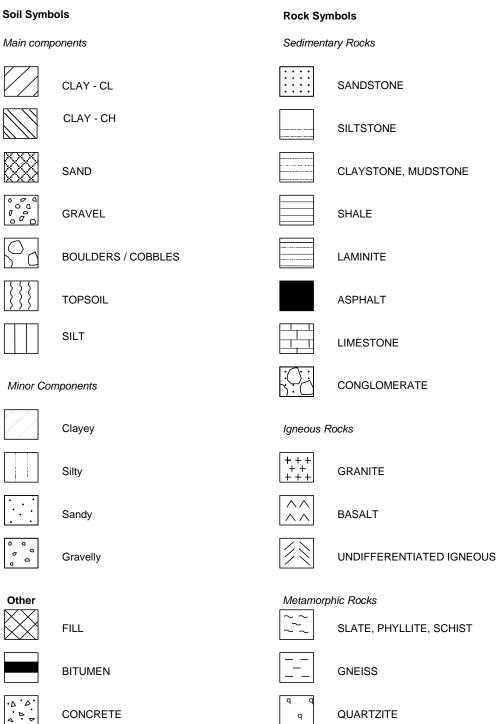

Туре:	Description	
В	Bedding	
F	Fault	
С	Cleavage	
J	Joint	
S	Shear Zone	
D	Drill break	
Planarity/Roughness:		

Pla	nar	ity/	'Ro	ug	hn	ess	
-----	-----	------	-----	----	----	-----	--

Class	Description	
I	rough or irregular, stepped	
II	smooth, stepped	
111	slickensided, stepped	
IV	rough or irregular, undulating	
V	smooth, undulating	
VI	slickensided, undulating	
VII	rough or irregular, planar	
VIII	smooth, planar	
IX	slickensided, planar	

The inclination if defects are measured from perpendicular to the core axis.

WATER


Groundwater not observed: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

Groundwater not encountered: The borehole/test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.

Graphic Symbols for Soils and Rocks

Typical symbols for soils and rocks are as follows. Combinations of these symbols may be used to indicated mixed materials such as clayey sand.

Engineering Classification of Shales and Sandstones in the Sydney Region – A Summary Guide

The Sydney Rock Class classification system is based on rock strength, defect spacing and allowable seams as set out below. All three factors must be satisfied.

CLASSIFICATION FOR SANDSTONE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)
I	>24	>600	<1.5
Ш	>12	>600	<3
Ш	>7	>200	<5
IV	>2	>60	<10
V	>1	N.A.	N.A.

CLASSIFICATION FOR SHALE

Class	Uniaxial Compressive Strength (MPa)	Defect Spacing (mm)	Allowable Seams (%)
I	>16	>600	<2
Ш	>7	>200	<4
III	>2	>60	<8
IV	>1	>20	<25
V	>1	N.A.	N.A.

UNIAXIAL COMPRESSIVE STRENGTH (UCS)

For expedience in field/construction situations the uniaxial (unconfined) compressive strength of the rock is often inferred, or assessed using the point load strength index (Is_{50}) test (AS 4133.4.1 – 1993). For Sydney Basin sedimentary rocks the uniaxial compressive strength is typically about 20 x (Is_{50}) but the multiplier may range from about 10 to 30 depending on the rock type and characteristics. In the absence of UCS tests, the assigned Sydney Rock Class classification may therefore include rock strengths outside the nominated UCS range.

DEFECT SPACING

The terms relate to spacing of natural fractures in NMLC, NQ and HQ diamond drill cores and have the following definitions:

Defect Spacing (mm)	Terms Used to Describe Defect Spacing ¹
>2000	Very widely spaced
600 - 2000	Widely spaced
200 - 600	Moderately spaced
60 - 200	Closely spaced
20 - 60	Very closely spaced
<20	Extremely closely spaced

¹After ISO/CD14689 and ISRM.

ALLOWABLE SEAMS

Seams include clay, fragmented, highly weathered or similar zones, usually sub-parallel to the loaded surface. The limits suggested in the tables relate to a defined zone of influence. For pad footings, the zone of influence is defined as 1.5 times the least footing dimension. For socketed footings, the zone includes the length of the socket plus a further depth equal to the width of the footing. For tunnel or excavation assessment purposes the defects are assessed over a length of core of similar characteristics.

Source: Based on Pells et al (1978), as revised by Pells et al (1998).

Pells, P.J.N, Mostyn, G. and Walker, B.F. - Foundations on Sandstone and Shale in the Sydney Region. Australian Geomechanics Journal, No 33 Part 3, December 1998.

Summary of Soil Logging Procedures

Coarse Material: grain size - colour - particle shape - secondary components - minor constituents - moisture condition - relative density - origin - additional observations. Fine Material: plasticity - colour - secondary components - minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

	Guide to the Description, Identification and Classification of Soils												
	Major D	Divisio	ons	SYMBOL			Typical Nam	ies					
> 2	:00mm	BOU	JLDERS										
60 to	60 to 200mm COBBLES												
	s m	GRAVEL	50% action im	GW	Well-graded gr	avels, gravel-sand	I mixtures, little or	no fines.					
Ð	is les .075i	GR/	han 50% e fracti 36mm	GP	Poorly graded	gravels and gravel	-sand mixtures, lit	tle or no fines, un	iform gravels.				
ΔI	mas hat 0	relly İls	More than 50% of coarse fraction > 2.36mm	GM	Silty gravels, g	ravel-sand-silt mix	tures.						
SE GR/ SOILS	y dry tter tl	Gravelly Soils	Mo of c	GC	Clayey gravels	, gravel-sand-clay	mixtures						
COARSE GRAINED SOIL S	More than 65% by dry mass less han 63mm is greater that 0.075mm	SANDS	50% action 1m	SW	Well-graded sa	ands, gravelly sand	ds, little or no fines	.					
AR	an 64 Im is	SAN	han 50 ⁹ se fract 36mm	SP	Poorly graded	sands and gravelly	y sands; little or no	fines, uniform sa	inds.				
8	ore th 63m	Sandy Soils	dy ils	ndy ils	dy iis	lis vbc sii	More than 50% of coarse fraction < 2.36mm	SM	Silty sands, san	nd-silt mixtures.			
	Mc than	S al	Mo of c	SC	Clayey sands, sand-clay mixtures.								
0	s. <	076mm Liquid Limit < 50%		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts								
NEC	by dr Omm Smm			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.								
RAII	35% 1an 6 0.076	:	Ľġ	OL	Organic silts and organic silty clays of low plasticity.								
FINE GRAINED SOILS	More than 35% by dry mass less than 60mm is less than 0.076mm		≈ ⊐it	MH	Inorganic silts,	micaceous or dia	tomaceous fine sar	ndy or silty soils,	elastic silts.				
NI.	ore t iss le less		Liquid Limit > 50%	CH	Inorganic clays of high plasticity, fat clays.								
ш	M ma	:	, Lig	ОН	Organic clays	of medium to high	n plasticity, organio	silts.					
HIGH	LY ORG	ANIC	SOILS	Pt	Peat and other	highly organic so	ils.						
	40		'A-I	_ine'			Gra	in sizes					
	_% 30			•	\vdash	Gra	avel		Sand				
	% 20	c			\square	Coarse -	63 to 20mm	Coarse -	2.36 to 0.6mm				

	Descriptive Terms for Material Portions								
	CC	DARSE GRAINED SOILS	FINE GRAINED SOILS						
%	6 Fines	Term/Modifier	% Coarse Term/Modifier						
	<u>≤</u> 5	Omit, or use "trace"	≤ 15 Omit, or use "trace"						
>	5, ≤ 12	"with clay/silt" as applicable	> 15, ≤ 30	"with sand/gravel" as applicable					
	> 12	Prefix soil as "silty/clayey"	> 30	Prefix as "sandy/gravelly"					

	Moisture Condition						
for non-cohes	or non-cohesive soils:						
Dry -	Dry - runs freely through fingers.						
Moist -	does not run f	reely but no free water visible on soil surface.					
Wet -	free water visil	ble on soil surface.					
for cohesive s	oils:						
MC> PL	Moisture conte	ent estimated to be greater than the plastic limit.					
MC~PL	Moisture conte	ent estimated to be approximately equal to the plastic limit.					
	The soil can b	e moulded					
MC< PL	Moisture conte	ent estimated to be less than the plastic limit. The soil is hard					
	and friable, or	powdery.					
The plastic limit (P	L) is defined as the r	noisture content (percentage) at which the soil crumbles when rolled into threads of 3mm dia.					
		Consistency - For Clays & Silts					
Description	UCS(kPa)	Field guide to consistency					
Very soft	< 25	Exudes between the fingers when squeezed in hand					

Description	UCS(kPa)	Field guide to consistency
Very soft	< 25	Exudes between the fingers when squeezed in hand
Soft	25 - 50	Can be moulded by light finger pressure
Firm	50 - 100	Can be moulded by strong finger pressure
Stiff	100 - 200	Cannot be moulded by fingers. Can be indented by thumb.
Very stiff	200 - 400	Can be indented by thumb nail
Hard	> 400	Can be indented with difficulty by thumb nail
Friable	-	Crumbles or powders when scraped by thumbnail

Relative Density for Gravels and Sands						
Description	SPT "N" Value	Density Index (ID) Range %				
Very loose	0 - 4	< 15				
Loose	4 - 10	15 - 35				
Medium dense	10 - 30	35 - 65				
Dense	30 - 50	65 - 85				
Very dense	> 50	> 85				

GEOLOGICAL ORIGIN:-

20 30 40 50 60 70

Fill - artificial soils / deposits Alluvial - soils deposited by the action of water Aeolian - soils deposited by the action of wind

ion of waterResidual - soils derived from insitu weathering of parent rock.tion of windColluvial - transported debris usually unsorted, loose and deposited

Medium - 20 to 6 mm

Fine - 6 to 2.36mm

Topsoil - soils supporting plant life containing significant organic content

Medium -

0.6 to 0.2mm

Fine - 0.2 to 0.075mm

Field Identification of Fine Grained Soils - Silt or Clay?

Liquid Limit (%)

Dry Strength - Allow the soil to dry completely and then test its strength by breaking and crumbling between the fingers.

High dry strength - Clays; Very slight dry strength - Silts.

Toughness Test - the soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled repeatedly until it has dried sufficiently to break into lumps. In this condition inorganic clays are fairly stiff and tough while inorganic silts produce a weak and often soft thread which may be difficult to form and readily breaks and crumbles.

Dilatancy Test - Add sufficient water to the soil, held in the palm of the hand, to make it soft but not sticky. Shake horizontally, striking vigorously against the other hand several times. Dilatancy is indicated by the appearance of a shiny film on the surface of the soil. If the soil is then squeezed or pressed with the fingers, the surface becomes dull as the soil stiffens and eventually crumbles. These reactions are pronounced only for predominantly silt size material. Plastic clays give no reaction.

Summary of Rock Logging Procedures

Description order: constituents - rock name - grain size - colour - weathering - strength - minor constituents - additional observations.

· minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations.

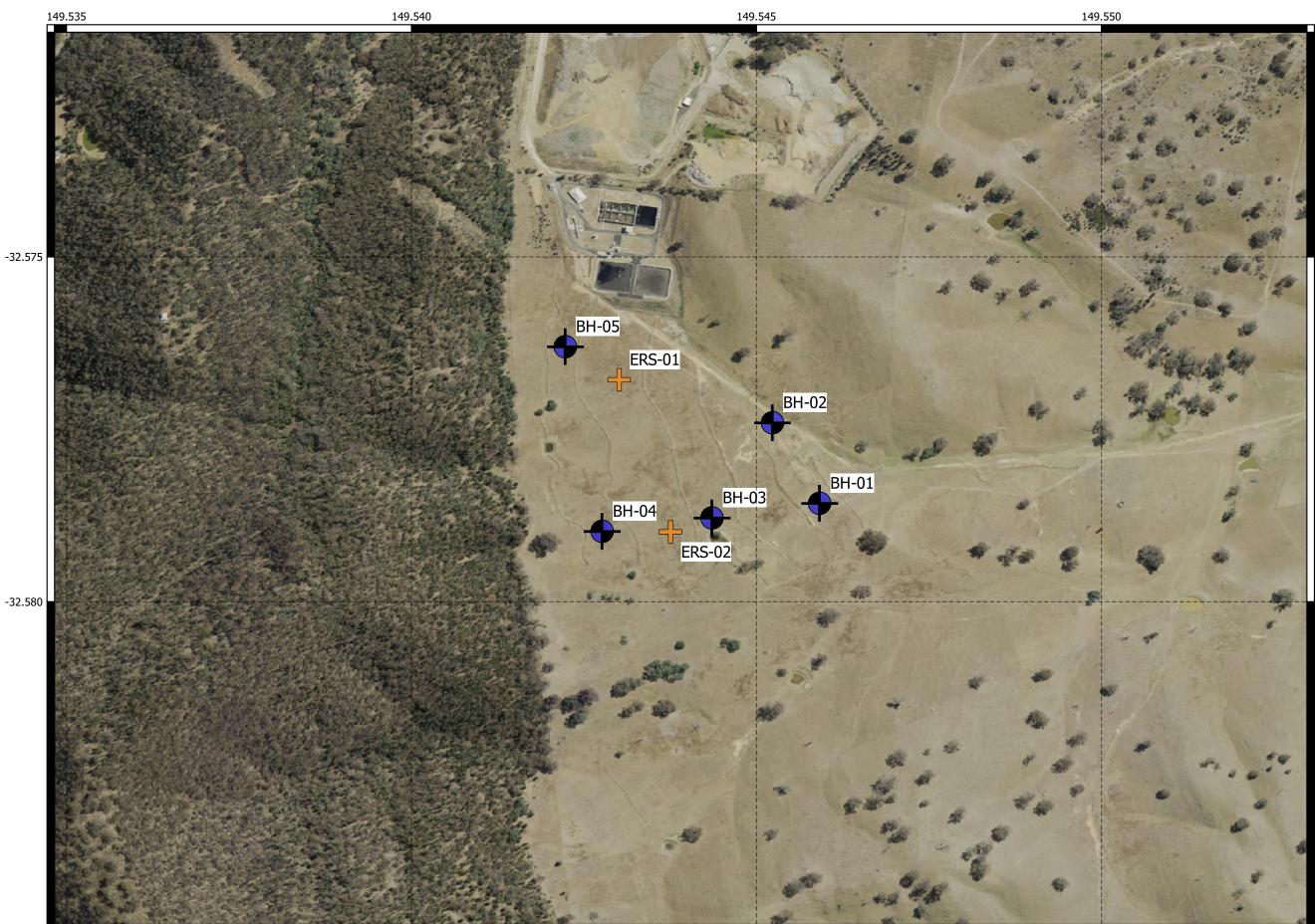
	Definition - Sedimentary Rock
Conglomerate	more than 50% of the rock consists of gravel (>2mm) sized fragments
Sandstone	more than 50% of the rock consists of sand (0.06 to 2mm) sized grains
Siltstone	more than 50% of the rock consists of silt sized granular particles and the rock is not laminated
Claystone	more than 50% of the rock consists of clay or mica material and the rock is not laminated
Shale	more than 50% of the rock consists of clay or silt sized particles and the rock is laminated

		Weathering				
Residual	RS	Soil developed on extremely weathered rock; the mass structure and				
Soil substance fabric are no longer evident; there is a change in volume						
		but the soil has not significantly transported.				
Extremely	EW	Rock is weathered to such an extent that it has 'soil' properties; ie. it either disintegrates or				
Weathered can be remoulded, in water.						
Distinctly	DW	Highly Weathered (HW) - Rock is wholly discoloured and rock strength is significantly				
Weathered		changed by weathering. Some primary minerals have weathered to clay minerals Moderately Weathered (MW) - The whole of the rock is discoloured, usually by iron staining and bleaching. Shows little or no change in rock strength.				
Slightly		Rock is slightly discoloured but shows little or no change of strength from fresh rock.				
Weathered						
Fresh	FR	Rock shows no sign of decomposition or staining.				

[Stratification								
	thinly laminated	<6mm	medium bedded	0.2 - 0.6m					
	laminated	6 - 20mm	thickly bedded	0.6 - 2m					
	very thinly bedded	20 - 60mm	very thickly bedded	>2m					
	thinly bedded	60mm - 0.2m							

	Discontinuities									
order of de	order of description: depth - type - orientation - spacing - roughness / planarity - thickness - coating									
	Туре	Class	Roughness/Planarity	Class	Roughness/Planarity					
В	Bedding	I	rough or irregular, stepped	VI	slickensided, undulating					
F	Fault	Ш	smooth, stepped	VII	rough or irregular, planar					
С	Cleavage	III	slickensided, stepped	VIII	smooth, planar					
J	Joint	IV	rough or irregular, undulating	IX	slickensided, planar					
S	Shear Zone	V	smooth, undulating							
D	Drill break									

			Rock Strength
Term		IS (50)	Field Guide
Very low VL		0.03	Material crumbles under firm blows with sharp end of pick; can be peeled with knive. Pieces up to 30mm thick can be broken by finger pressure.
Low	L	0.1	A piece of core 150 mm long x 50 mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium	М	0.3	A piece of core 150 mm long x 50 mm dia. can be broken by hand with considerable difficulty. Readily scored with knife.
High H		3	A piece of core 150 mm long x 50 mm dia. core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH		A piece of core 150 mm long x 50 mm dia. May be broken readily with hand held hammer. Cannot be scratched with pen knife.
Extremely High	EH efined by	10 point load s	A piece of core 150 mm long x 50 mm dia. Is difficult to break with hand held hammer. Rings when struck with a hammer.
			Degree of fracturing
fragmented			e is comprised primarily of fragments of length less than 20mm, and of width less than the core diameter
highly fractured			ngths are generally less than 20mm - 40mm casional fragments.
fractured			ngths are mainly 30mm - 100mm with occasional shorter ger lengths
slightly		Core ler	ngths are generally 300mm - 1000mm with occasional longer sections


unbroken The core does not contain any fracture. # - spacing of all types of natural fractures, but not artificial breaks, in cored bores.

fractured

The fracture spacing is shown where applicable and the Rock Quality Designation isgiven by:RQD (%) = sum of unbroken core pieces 100 mm or longer


and shorter sections of 100mm -- 300mm.

149.535	149.540	149.540 149.545					149.5	550
MACQUARIE	Client: Engie Electrical & Communications				100	200	300	400
	Project: Mudgee 5MW Solar Farm				M	etres - S	cale 1:4000)
GEOŢECH	Location: Mudgee NSW				Vertical to Horizontal Scale 1 : 1			
3 Watt Drive, Bathurst NSW 2795 P: 02 6332 2011 F: 02 6334 4213 E: macgeo@macgeo.com.au	Drawn: A. Drösemeyer	Checked: J. Boyle	08-09-2020	Co-ordinate Reference System - EPS			G: 4326 WG	

-32.580

-32.575

Legend

+ Electrical Resistivity Test

-32.580

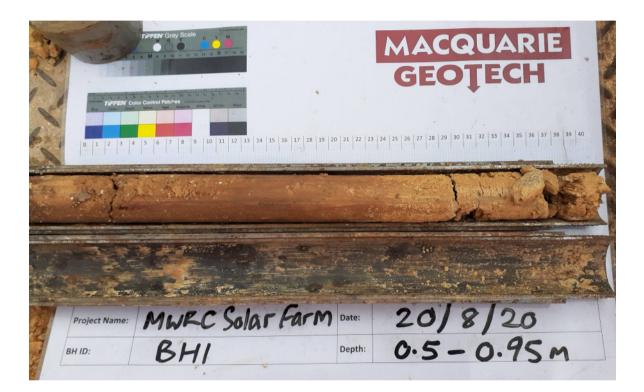
500 **JOB NO** B20354 Macquarie Geotechnical Ltd Geotechnical Investigation Locality Map GS: 84

Drawing Number: B30354 - Rev0

Appendix C – Borehole Logs

BH-01

Page 1 of 2


Engir	nee	rin	g Log - I	Boi	eho	le				Project No.:		B2	2035	54			Page 1 of 2	
Client Projec Hole I	:: ct Na Loca	ime: tion:	Engie Mudge	Elec e 5N	trical & IW So	& Cor blar F	arm	I	ons MGA94 Zone 55	Commenced Completed: Logged By: Checked By		20 L.)/08/)/08/ Brin Boyl	/202 ndle	20			
Drill N Hole [d Mounting:		ristie [1 - 250		-		Inclination: -90° Bearing:	RL Surface: Datum:		95.62 HD	2 m	С	per	ator	: L. Brindle	
	-	Drill	ing Information			-			Soil Desci								Observations	
Method Penetration	Logina Samples Logina Samples Tests Remarks Characteria Characteri						Prapric Log	Classification Symbol	Material Descriptic Fraction, Colour, Structure Plasticity, Sensitivity, Ac	, Bedding,	Moisture Condition	Consistency Relative Density	Relative Density		Pocket etrometer UCS (kPa)		- Structure and Additional Observations	
ADT		Observed	1 B 0.10-0.50 m 1 D 0.10-0.50 m 1 Z 8 D 0.50-1.00 m SPT 0.50-0.95 m 4,5,7 N=12 PP 0.50 m =200 kPa 2 D 1.00-1.50 m		2 1			CL-CI CI	TOPSOIL Silty CLAY: medium plast Silty Sandy CLAY trace gravel: low t plasticity, orange-brown; sand fine to gravel fine sub-angular. Silty CLAY: medium plasticity, yellov	to medium o coarse grained;	 (>PL)			x x 30	56		OPSOIL ESIDUAL SOIL	
			2 SPT 1.50-1.79 m 5,11/140mm HB N=11/140mm PP 1.50 m =250 kPa	102 6	2			CL-CI	XW CLAYSTONE recovered as Silty low to medium plasticity, yellow-brow medium angular gravel.		M (<pl)< td=""><td>н</td><td></td><td></td><td></td><td></td><td>XTREMELYWEATHERED [–] IATERIAL</td></pl)<>	н					XTREMELYWEATHERED [–] IATERIAL	
				- CO2	3				Hole Terminated at 2.70 m Refusal									
				- 107 - 707														
				0	5 5													
AS - A RR - R WB- V	Metho Auger Rock F	Scre Rollei	wing 🖂	rang rei	ion sistanc ing to usal aphic		$\land \lor \land$		Date) U - Undisturbed Sam D - Disturbed Sam SPT - Standard Penel Loss ete Loss	ample ple tration Test		<u>ure C</u> D - E M - M V - V astic I	Dry Moist Wet	:		Cor	Isistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose	
	Suppo - Ca					recove tes ma	ered ((hatchi	ng <u>Classification S</u> and Soil Descr Based on Unifie Classification S	riptions ed Soil		< P = P < P	L				MD - Medium Dense D - Dense VD - Very Dense	

MACQUARIE GEOŢECH

BH-01

Page 2 of 2

Engineering L	_og - l	Borehole			Project No.:	B2035	4		
Client: Project Name:	•	Electrical & Communicati e 5MW Solar Farm	ons		Commenced: Completed:	20/08/2 20/08/2			
Hole Location: Hole Coordinates:	73898	6.7 m E 6392571.8 m N N	/IGA94 Zone 55		Logged By: Checked By:	L. Brind J.Boyle			
Drill Model and Mo Hole Diameter:	ounting:	Christie Drill Rig 114 - 250 mm	Inclination: - Bearing:	-90°	RL Surface: Datum:	495.62 m AHD	Operator:	L. Brindle	

BH-01 Depth Range: 0.50 - 0.95 m

BH-02

Page 1 of 3

F	Client: Projec Hole L Hole C	t Na oca	tion:	Mud	gee	5MV	al & C / Sola 5 6392	r Farn	Commenced Completed: Logged By: Checked By:		20 L.	/08/2020 /08/2020 Brindle Boyle			
	Drill M Hole D			d Mounting			tie Dri 250 n	-		Inclination: -90° Bearing:	RL Surface: Datum:		95.70 HD		rator: L. Brindle
				ing Inform						Soil Descri					Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptior Fraction, Colour, Structure, Plasticity, Sensitivity, Add	Bedding,	Moisture Condition	Consistency Relative Density	Pocket Penetrome UCS (kPa)	Additional Observation
ADT M				1 B 0.10-0.50 m 1 D 0.10-0.50 m 1 SPT 0.50-0.95 m 3.4,7 N=11 PP 0.50 m =200 kPa 2 D 1.00-1.50 m 2 SPT 1.50-1.95 m 6,6,7 N=13 PP 1.50 m =200 kPa		493.7 494.7		CI	TOPSOIL Silty CLAY: medium plastic Silty CLAY: medium plasticity, orange	/	M (>PL)	St	×	TOPSOIL RESIDUAL SOIL	
			N	3 D 2.50-3.00 m 3 SPT 3.00-3.45 m 5,7,19 N=26		ا 492.7	- 3- - -		CL CL-CI	Silty Sandy CLAY with gravel: low pl yellow-brown; sand fine to coarse gr to medium sub-angular to angular. XW CLAYSTONE recovered as Silty low to medium plasticity, yellow-brow medium angular gravel.	ined; gravel fine		VSt to H		EXTREMELY WEATHERED MATERIAL
				4 D 4.00-4.50 m 4 SPT 4.50-4.55 m 11/50mm HB		7 491.7	- 4 - - -			medum angular gravel.		M (<pl)< td=""><td>н</td><td></td><td></td></pl)<>	н		
	<u>/////</u> 	letho uger		E	No	<u><i>L</i>.067</u> tration	tance		<u>Wate</u> Level (Date) U - Undisturbed San			<u>ure Co</u>) - [] / - M	Dindition Dry	Consistency/Relative Density VS - Very Soft
F V	vb- w <u>si</u>	asht uppc	ore				al <u>hic Lo</u> g	D ⊂ ⊂ ⊂ g/Core overed	Inflow Partial Comple <u>Loss</u> I (hatchi	SPT - Standard Penetr Loss ete Loss Classification Sv	mbols tions	۱. ۱	A - N V - V <u>astic I</u> < Pi = Pi < P	Vet Limit	VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

MACQUARIE GEOŢECH


BH-02

Page 2 of 3

Engineering L	.og - E	Borehole	Project No.:	4					
Client:	Engie I	Electrical & Communicati	Commenced:	20/08/2	2020				
Project Name:	Mudge	e 5MW Solar Farm			Completed: 20/08/2020				
Hole Location:				Logged By:	L. Brin	dle			
Hole Coordinates:	73892	5.7 m E 6392702.6 m N N	/IGA94 Zone 55		Checked By:	J.Boyle	9		
Drill Model and Mo	unting:	Christie Drill Rig	Inclination:	-90°	RL Surface:	495.70 m			
Hole Diameter:		114 - 250 mm	Bearing:		Datum: AHD Operator			L. Brindle	

BH-02 Depth Range: 0.50 - 0.95 m

BH-02

Page 3 of 3

Engineering L	₋og - Borehole			Project No.:	B20354	
Client: Project Name:	Engie Electrical & Communications Mudgee 5MW Solar Farm	3		Commenced: Completed:	20/08/2020 20/08/2020	
Hole Location:	738925.7 m E 6392702.6 m N MG	A94 Zone 55		Logged By: Checked By:	L. Brindle J.Boyle	
Drill Model and Mo Hole Diameter:	ounting: Christie Drill Rig 114 - 250 mm	Inclination: Bearing:	-90°	RL Surface: Datum:	495.70 m AHD Operate	or: L. Brindle

BH-02 Depth Range: 3.00 - 3.45 m

BH-03

Page 1 of 3

C P H	Client: Project Hole L	t Na	me: tion:	Mudg	e El gee	ectric 5MW	cal & C / Sola	Comm r Farr		ons MGA94 Zone 55	Project No.: Commenced Completed: Logged By: Checked By		21 21 L.	20354 /08/202 /08/202 Brindle Boyle		
	Drill M Hole D			d Mounting			tie Dri 250 n	•		Inclination: -90° Bearing:	RL Surface: Datum:		03.97 HD		nerat	or: L. Brindle
				ing Inform			2001			Soil Descrip				0		Observations
													sity			
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description Fraction, Colour, Structure, E Plasticity, Sensitivity, Addi		Moisture Condition	Consistency Relative Density	Pock Penetror UCS (kPa	meter S a)	Structure and Additional Observatior
ADIT			Not Observed	1 B 0.10-0.50 m 1 D 0.50-1.00 m SPT 0.50-0.95 m 2.4,8 N=12 PP 0.50 m 3.300 kPa 2 D 1.00-1.50 m 2.50-3.00 m 3 D 2.50-3.00 m 3 D 2.50-3.00 m 2.50-3.00 m 2.50-3.00 m 3 D 2.50-3.00 m 2.50-3.00 m 3 D 2.50-3.00 m 3 D 2.50-3.00 m 3 D 2.50-3.00 m 3 D 2.50-3.00 m 3 D 2.50-3.00 m 3 D 3 D 3 D 3 D 3 D 3 D 3 D 3 D		500.0 501.0 502.0 503.0			CL-CI	TOPSOIL Silty CLAY: medium plastici Silty CLAY: low plasticity, orange-brow Silty Sandy CLAY: low to medium plas orange-brown; sand fine grained.		M (>PL)	St VSt VSt	x		TOPSOIL RESIDUAL SOIL
R	 	očk F	Scre Rollei	wina 🖂		0. 66 67 7 7 7 7 7 7 7 7 7 7 7 7 7	tance to	\square	<u>Wate</u> Level (Inflow Partial	Date) U - Undisturbed Sample D - Disturbed Sample SPT - Standard Penetra	ple	[<u>иге Со</u> О - Е И - М V - V	DIN INTERNATION I	<u>c</u>	Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Marg
		<u>ирро</u> - Са				C C	hic Log ore rec dicates	g/Core overed mater	Loss I (hatchi	ete Loss ng and Soil Descrip Based on Unified Classification Syn Based Solution Classification Sys	<u>tions</u> Soil	<u>PI</u>	a <u>stic I</u> < Pi = Pi < Pi	L		H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

BH-03

Page 2 of 3

Engineering I	_og - E	Borehole			Project No.:	B2035	4		
Client:	Engie	Electrical & Communication	ons		Commenced:	21/08/2	2020		
Project Name:	Mudge	e 5MW Solar Farm			Completed:	21/08/2	2020		
Hole Location:					Logged By:	L. Brin	dle		
Hole Coordinates:	738839	9.8 m E 6392551.2 m N N	IGA94 Zone 55		Checked By:	J.Boyle	9		
Drill Model and Mo Hole Diameter:	ounting:	Christie Drill Rig 114 - 250 mm	Inclination: Bearing:	-90°	RL Surface: Datum:	503.97 m AHD	Operator:	L. Brindle	

BH-03 Depth Range: 0.50 - 0.95 m

BH-03

Page 3 of 3

Engineering L	.og - E	Borehole			Project No.:	B2035	4		
Client:	•	Electrical & Communicatio	ons		Commenced:	21/08/2			
Project Name:	Mudge	e 5MW Solar Farm			Completed:	21/08/2	2020		
Hole Location:					Logged By:	L. Brin	dle		
Hole Coordinates:	738839	9.8 m E 6392551.2 m N M	IGA94 Zone 55		Checked By:	J.Boyle	9		
Drill Model and Mo	ounting:	Christie Drill Rig	Inclination:	-90°	RL Surface:	503.97 m			
Hole Diameter:		114 - 250 mm	Bearing:		Datum:	AHD	Operator:	L. Brindle	

BH-03 Depth Range: 3.00 - 3.45 m

BH-04


Page 1 of 3

F	Client: Projec Hole L Hole C	t Na .oca	tion:	Mu	dgee	5MV	V Sola	ar Farr		ons MGA94 Zone 55	Commenced Completed: Logged By: Checked By		21 L.	/08/2 /08/2 Brinc Boyle	020 lle	
	Drill M Hole D			l Mounti	0	Chris 114 r		ill Rig		Inclination: -90° Bearing:	RL Surface: Datum:		15.77 HD	'n	Operat	tor: L. Brindle
				ing Infor						Soil Descr						Observations
Method	Penetration	Support	Water	Sample Tests Remark	/ery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptio Fraction, Colour, Structure, Plasticity, Sensitivity, Ad	Bedding,	Moisture Condition	Consistency Relative Density	Pene 1 00 00 00 00 00 00	ocket trometer JCS kPa) ୁନ ଜୁ ଜୁ	Structure and Additional Observation
AD/T			Not Observed	1 D 0.10-0.50 1 SPT 0.50-0.95 3.6,14 N=20 PP 0.50 r =400 kPa 2 D 1.00-1.50 2 SPT 1.50-1.65 30 HB 3 D 2.50-3.00 3 SPT 3.00-3.09 30/90mm HB 4 D 4.00-4.50 4 SPT 4.50-4.55 30/50mm HB		510.8 511.8 512.8 513.8 514.8			CL-CI	TOPSOIL Silty CLAY: medium plasti Silty Sandy CLAY: medium plasticity orange-brown; sand fine grained. Silty Sandy CLAY: low to medium pla orange-brown; sand fine to coarse g		(>PL)	VSt VSt H		×	TOPSOIL RESIDUAL SOIL
F	 	očk F	Screv Roller	wing	No	etration o resis anging refus	tance	\square	<u>Wate</u> Level (Inflow Partial	Date) U - Undisturbed Sa D - Disturbed Samp SPT - Standard Penet	mple	1	<u>ure С</u>) - [Л - N V - \	Dry Noist	on (Consistency/Relative Densi VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard VL - Very Loose
		uppo - Ca					ore re	s mater	d (hatchi	ng <u>Classification S</u> and Soil Descri Based on Unifie	ptions	<u>PI</u>	<u>astic</u> < P = P < P	L L		L - Loose MD - Medium Dense D - Dense VD - Very Dense

BH-04

Page 2 of 3

Engineering L	.og - Bor	ehole			Project No.:	B2035	4		
Client: Project Name:	0	trical & Communicat	ions		Commenced: Completed:	21/08/2 21/08/2			
Hole Location:	U	n E 6392533.2 m N l	MGA94 Zone 55		Logged By: Checked By:	L. Brin J.Boyle	dle		
Drill Model and Mo Hole Diameter:	0	ristie Drill Rig 1 mm	Inclination: Bearing:	-90°	RL Surface: Datum:	515.77 m AHD	Operator:	L. Brindle	

BH-04 Depth Range: 0.50 - 0.95 m

BH-04

Page 3 of 3

Engineering L	.og - Borehole	•			Project No.:	B2035	4		
Client: Project Name: Hole Location:	Engie Electrical & 0 Mudgee 5MW Sola				Commenced: Completed: Logged By:	21/08/2 21/08/2 L. Brine	2020		
Hole Coordinates:	738689.6 m E 6392	533.2 m N MGA9	4 Zone 55		Checked By:	J.Boyle	9		
Drill Model and Mo Hole Diameter:	unting: Christie Dri 114 mm	ll Rig	Inclination: Bearing:	-90°	RL Surface: Datum:	515.77 m AHD	Operator:	L. Brindle	

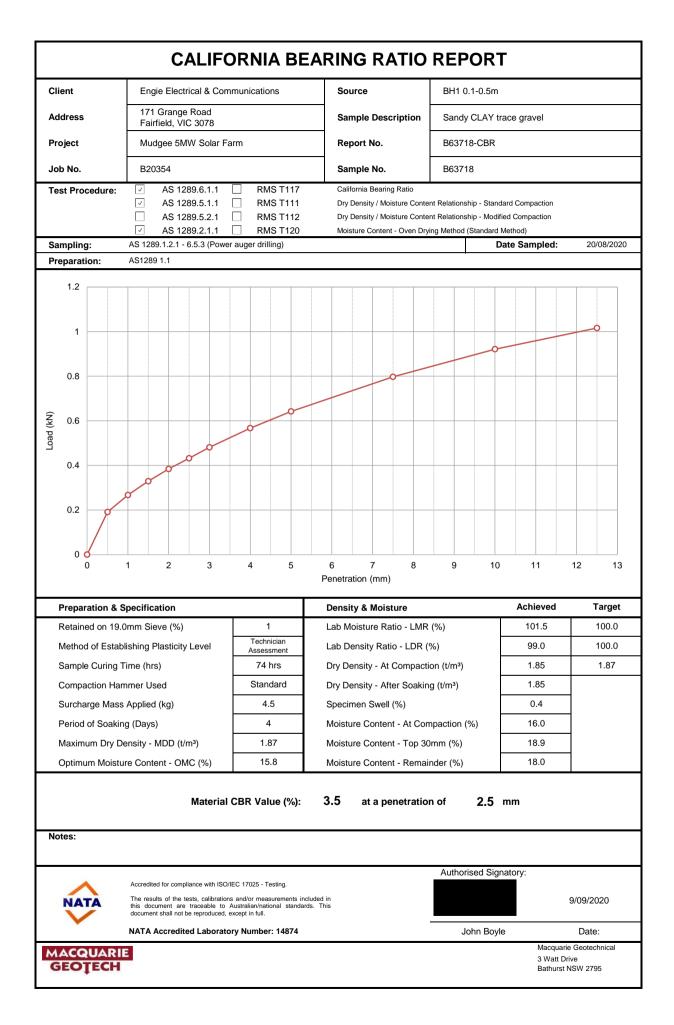
BH-04 Depth Range: 3.00 - 3.09 m

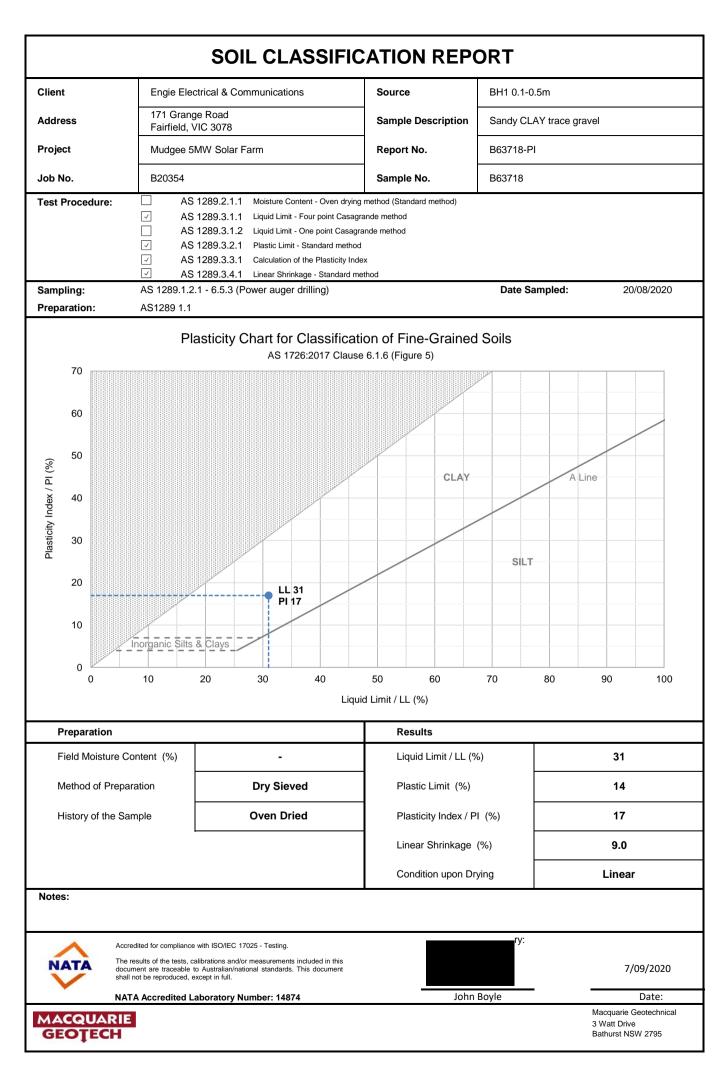
BH-05

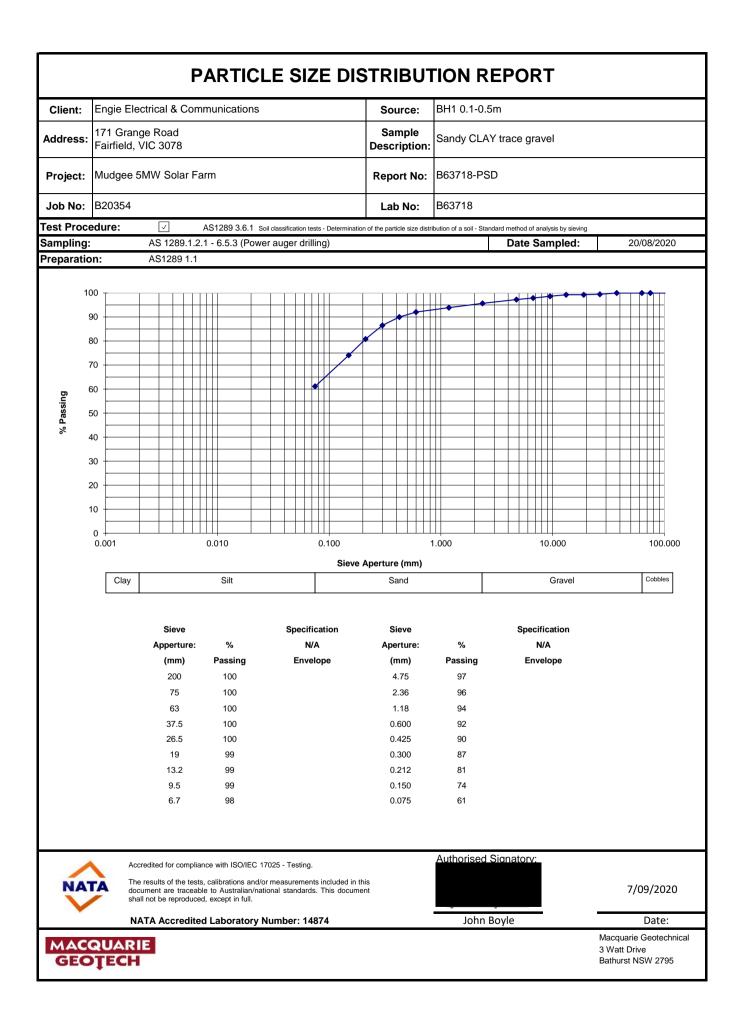
Page 1 of 2

P H	Client: Project Hole L Hole C	t Na .ocat	tion:	Mudg	jee	5MW	/ Sola	r Farn		ons MGA94 Zone 55	Commenced Completed: Logged By: Checked By		21 L.				
	Drill M Hole D			d Mounting:			tie Dr 250 r	ill Rig nm		Inclination: -90° Bearing:	RL Surface: Datum:		14.13 HD	3 m	0	oera	tor: L. Brindle
			Drill	ing Informa						Soil Desc							Observations
Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic Fraction, Colour, Structure Plasticity, Sensitivity, Ac	, Bedding,	Moisture Condition	Consistency Relative Density	Per	Pock netror UCS (kPa	metei S a)	r Structure and Additional Observatior
				1 B 0.10-0.50 m 1 D 0.10-0.50 m	M		-		CI	TOPSOIL Silty CLAY: medium plast Silty CLAY: medium plasticity, oranç	/	— — M (>PL)				4 11	TOPSOIL RESIDUAL SOIL
AD/T				1 2 B 0.50-1.00 m 2 D 0.50-1.50 m SPT	V/X	513.1	- - 1-		GP	Clayey Sandy GRAVEL with silt: find grained, angular, brown; sand fine to clay low to medium plasticity.	e to medium o coarse grained;	м	St to VSt				
				0.50-0.95 m 7,7,10 N=17 PP 0.50 m =300 kPa 3 D		4,	-		1	XW rock recovered as Silty Clayey fine to medium angular, brown, low plasticity clay, fine to coarse grained	to medium	(<pl)< td=""><td>н</td><td></td><td></td><td></td><td>EXTREMELY WEATHERED MATERIAL</td></pl)<>	н				EXTREMELY WEATHERED MATERIAL
				1.00-1.20 m SPT 1.50-1.55 m 30/50mm	-	512.1	- 2 -			Hole Terminated at 1.65 m Refusal							
					-	511.1	3-										
					-	510.1	- - 4										
						509.1	- - 5 -										
A R W	 MS - Au RR - Ro VB- W	letho uger ock F ashb	Scre Rollei		No n ra	tration resistanging refusa	- tance to	$\land \lor$	<u>Wate</u> Level (Inflow Partial	Date) U - Undisturbed Sa D - Disturbed Sam SPT - Standard Pene Loss	ample ple	Moist	<u>ure С</u> D - [И - М V - \	Drv		<u> </u>	Consistency/Relative Dens VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard
		<i>ирро</i> - Са] _ C	ore red	g/Core covered s mater	Loss I (hatchi	ete Loss ng <u>and Soil Descr</u> Based on Unifi Classification S	iptions	<u>Pl</u>	astic < P = P < P	Ĺ	t		H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

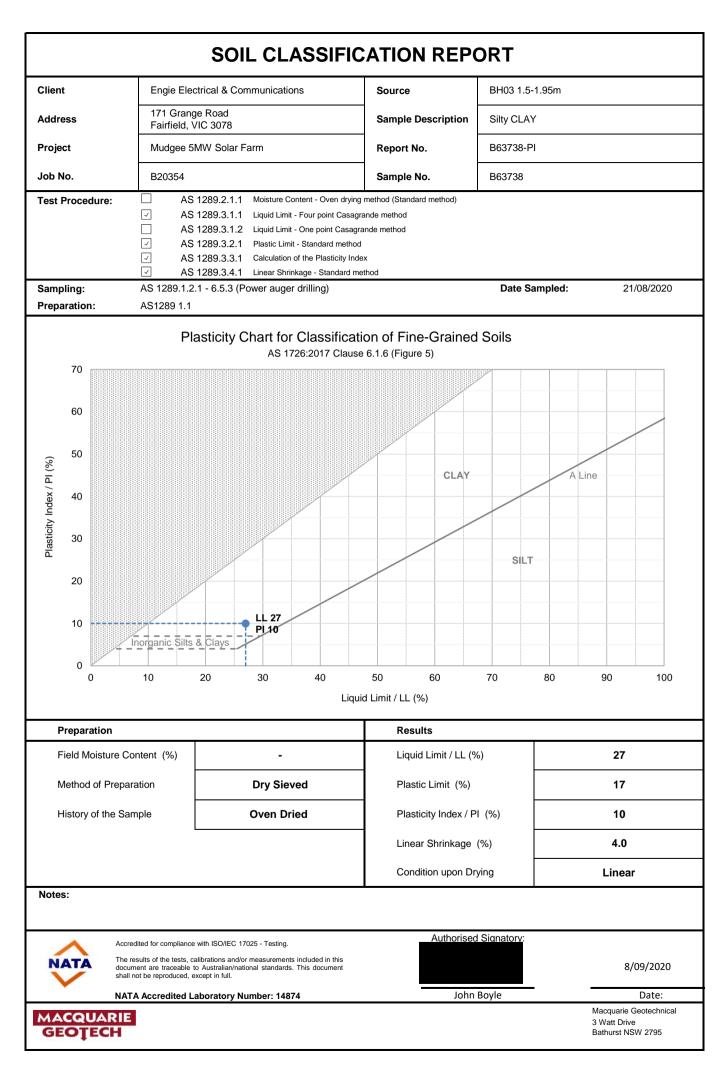
BH-05

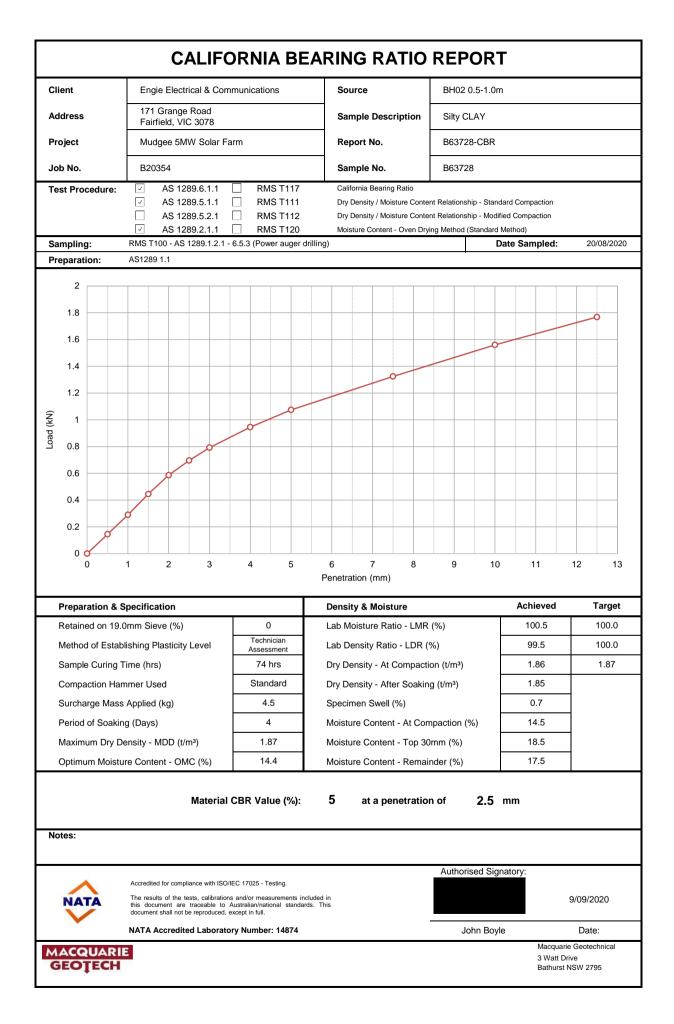

Page 2 of 2

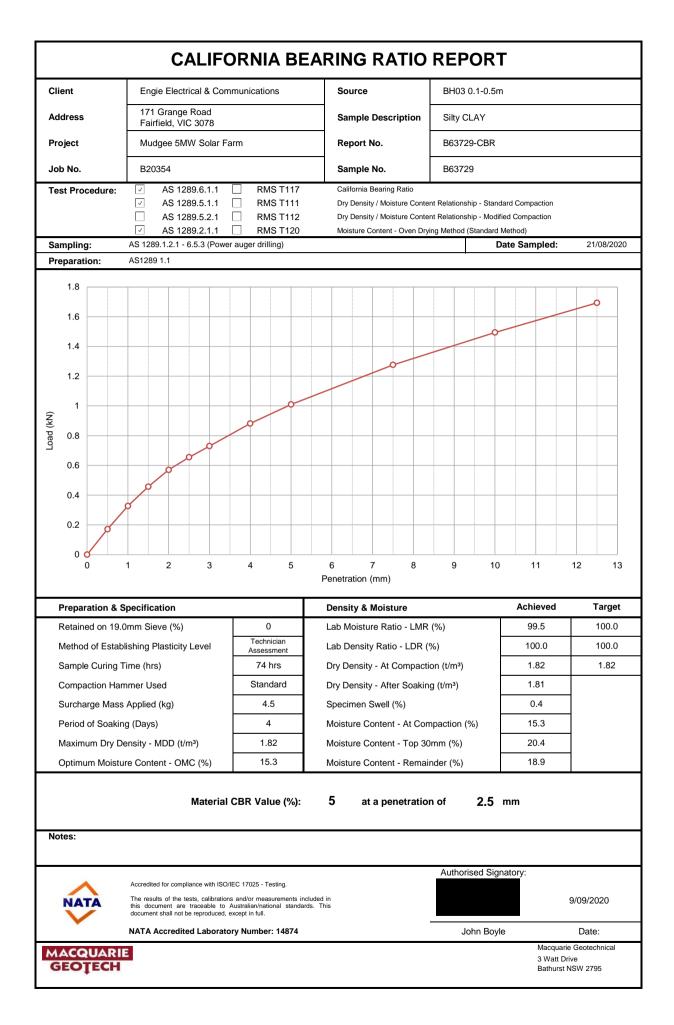

Engineering L	.og - I	Borehole			Project No.:	B2035	4	<u> </u>	
Client:	•	Electrical & Communication	ons		Commenced:	21/08/2			
Project Name:	Mudge	e 5MW Solar Farm			Completed:	21/08/2	2020		
Hole Location:					Logged By:	L. Brin	dle		
Hole Coordinates:	73864	6.6 m E 6392831.4 m N M	1GA94 Zone 55		Checked By:	J.Boyle	;		
Drill Model and Mc	ounting:	Christie Drill Rig	Inclination:	-90°	RL Surface:	514.13 m			
Hole Diameter:		114 - 250 mm	Bearing:		Datum:	AHD	Operator:	L. Brindle	

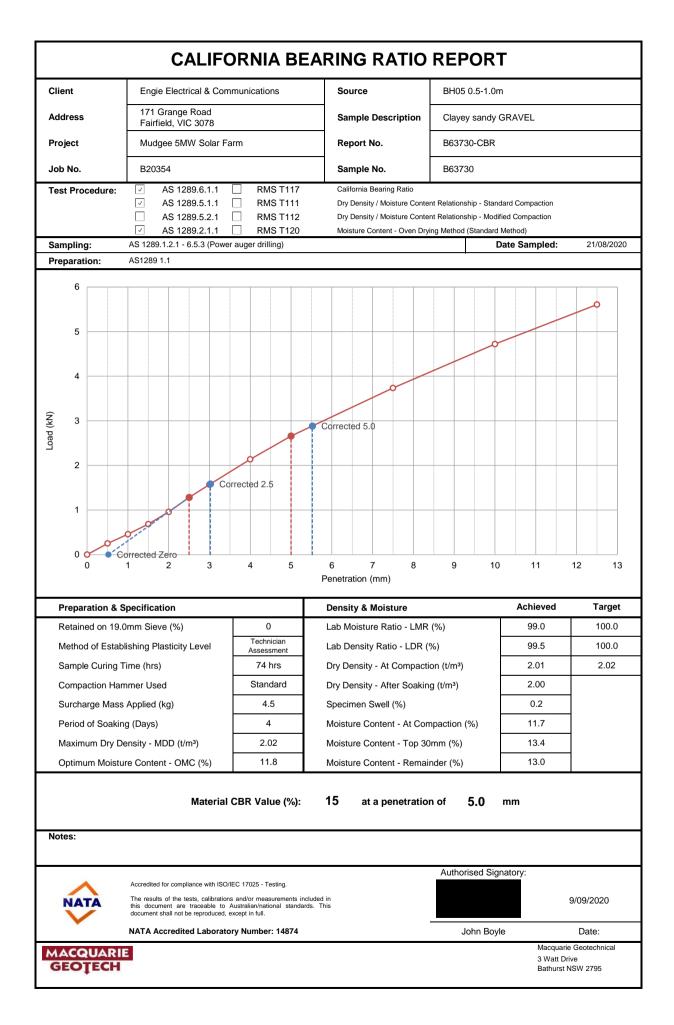


BH-05 Depth Range: 0.50 - 0.95 m

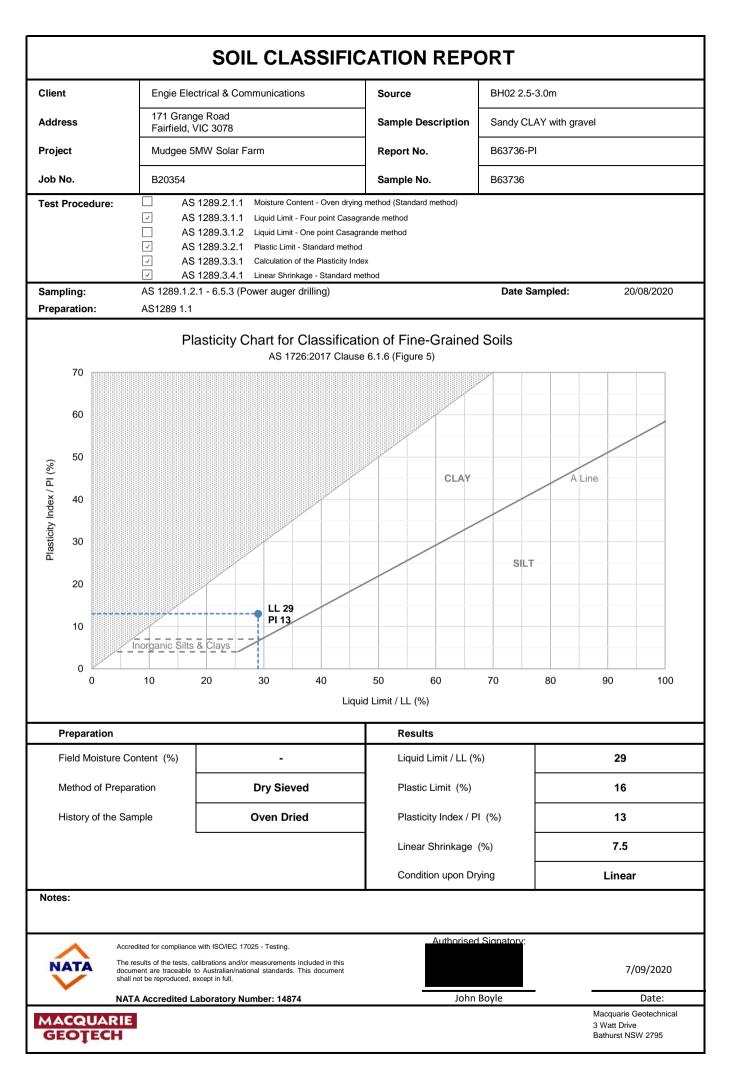


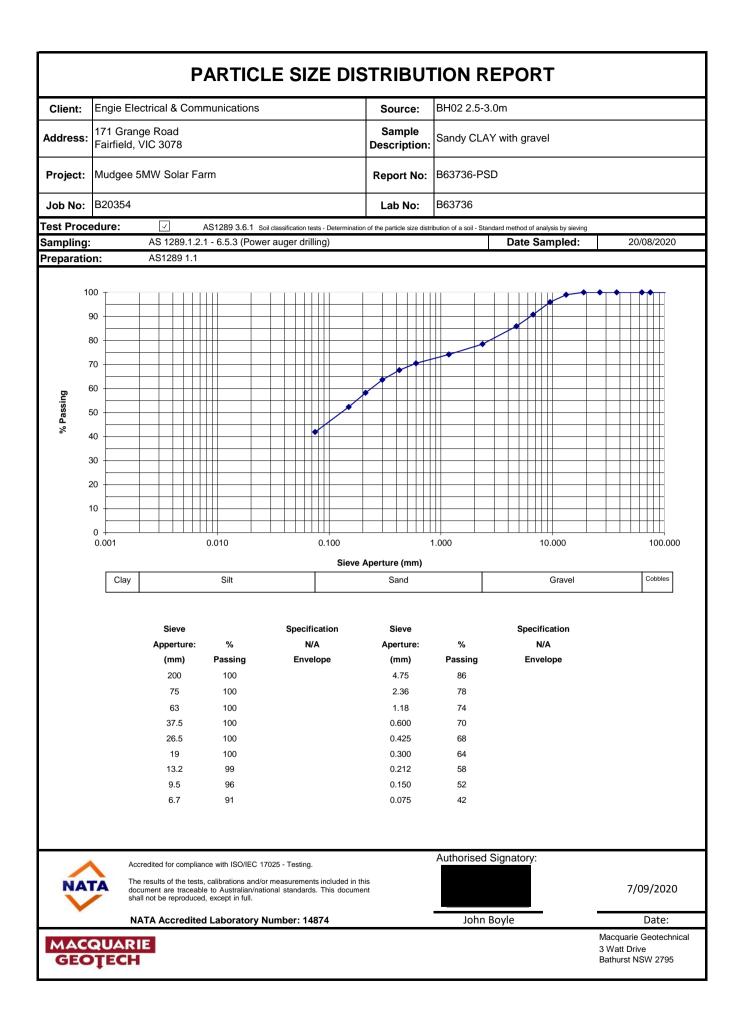


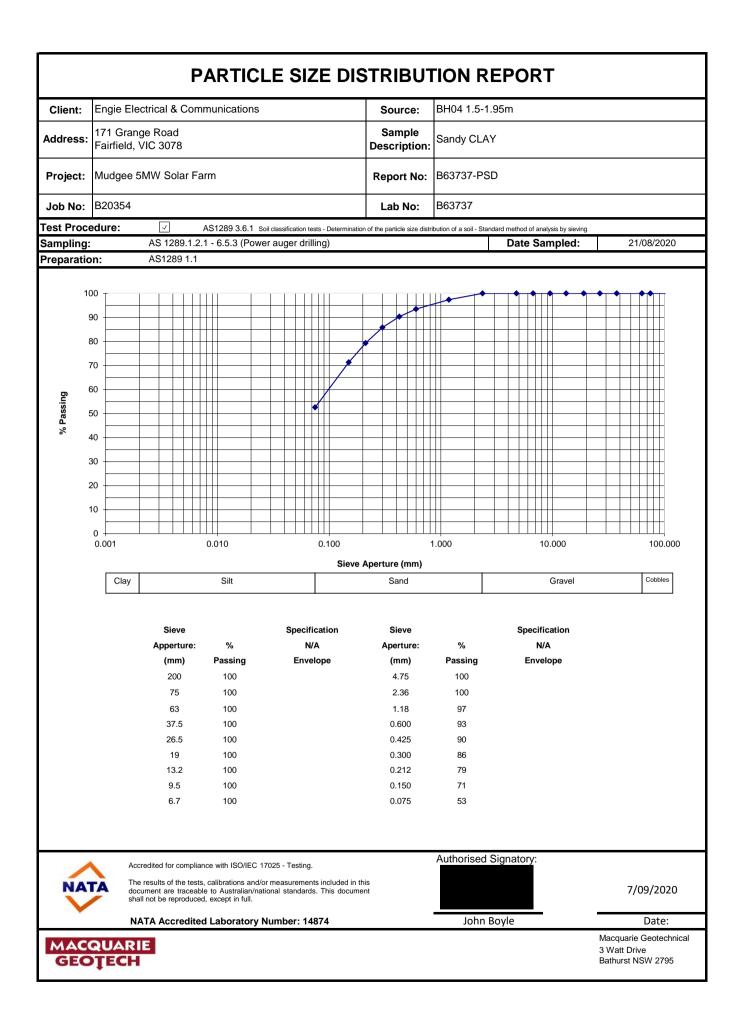




		S		MICAL PR	OPER	TIES I	REPOF	RT	
Client	Engie Elec	trical & C	Communications		Source	BH1 0.5-	0.95m		
Address	171 Grang Fairfield, V				Sample Description	Sandy si	Ity CLAY trace	e gravel	
Project	Mudgee 5M	/W Sola	r Farm		Report No.	B63719-	SCP		
Job No	B20354				Lab No.	B63719			
Test Proce	dure:	7	AS1289 4.2.1	Soil Chemical Tests - Determinati	on of a sulfate content of	a natural soil and th	ne sulfate content of th	e groundwater ·	Normal Method
		\checkmark	AS1289 4.3.1	Soil Chemical Tests - Determinati	on of the pH value of a so	oil - Electrometric m	ethod		
			AS 1289 4.4.1	Soil Chemical Tests - Determinati	on of the electrical resisti	vity of a soil - Metho	od for sands and granu	lar material	
			AS 1012.20	Chloride and sulphate					
			RMS T123	pH value of a soil (electrometric m	ethod)				
			RMS T185	Resistivity of sands and granular r	oad construction material	ls			
			RMS T200	Chloride content of roadbase					
		~	RMS T1010	Quantitative determination of chlo	rides in soil				
			RMS T1011	Quantitative determination of sulp	hates in soil				
			BS1377(1990 pt.3)	Water soluble sulphate content					
			APHA 4500 H+B	рН					
			APHA 4500 SO4 2-B	Sulphate					
			APHA 4500 CI-B	Chloride					
		7	APHA 2510 & 2520-B	Electrical Conductivity					
			TAI B117	Sulphides Present (This service N	ot Covered by NATA Acc	creditation)			
Sampling:	A	S 1289.1.	2.1 - 6.5.3 (Power a	auger drilling)			Date San	npled:	20/08/2020
Preparatio	n: P	repared in	n accordance with t	he test method					
			Sulphur P Sulphate Sulphate Chloride ior Electrical Co Mean R (Resisitivity)	des Present eroxide (% w/w) content (ppm) content (% w/w) pn content (ppm) n content (% w/w) pH nductivity (uS/cm) tesistivity Ω.m Density ratio (R _D) Density index (I _D)		- 40.9 0.00 170.6 0.02 10.1 640.0 - -			
NAT	The resu docume shall not	ults of the te nt are trace be reproduc	able to Australian/nation ced, except in full.	easurements included in this al standards. This document		Authorised			2/09/2020
	NATA	Accredit	ted Laboratory Nu	mber: 14874		Brad I	Morris		Date:
	QUARIE TECH								Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795


		S		MICAL PR	OPER	LIES F	REPORT	
Client	Engie Elec	ctrical & 0	Communications		Source	BH03 1.5	5-1.95m	
Address	171 Grang Fairfield, V				Sample Description	Silty CLA	Y	
Project	Mudgee 5	MW Sola	r Farm		Report No.	B63731-	SCP	
Job No	B20354				Lab No.	B63731		
Test Proce	dure:	\checkmark	AS1289 4.2.1	Soil Chemical Tests - Determination	on of a sulfate content of	a natural soil and th	he sulfate content of the groundwater	Normal Method
		\checkmark	AS1289 4.3.1	Soil Chemical Tests - Determination	on of the pH value of a so	oil - Electrometric m	ethod	
			AS 1289 4.4.1	Soil Chemical Tests - Determinati	on of the electrical resistiv	vity of a soil - Metho	od for sands and granular material	
			AS 1012.20	Chloride and sulphate				
			RMS T123	pH value of a soil (electrometric m	nethod)			
			RMS T185	Resistivity of sands and granular r	oad construction material	s		
			RMS T200	Chloride content of roadbase				
		\checkmark	RMS T1010	Quantitative determination of chlor	rides in soil			
			RMS T1011	Quantitative determination of sulp	hates in soil			
			BS1377(1990 pt.3)	Water soluble sulphate content				
			APHA 4500 H+B	рН				
			APHA 4500 SO4 2-B	Sulphate				
			APHA 4500 CI-B	Chloride				
		\checkmark	APHA 2510 & 2520-B	Electrical Conductivity				
			TAI B117	Sulphides Present (This service N	ot Covered by NATA Acc	reditation)		
Sampling:			.2.1 - 6.5.3 (Power a				Date Sampled:	21/08/2020
Preparation	1: P	repared in	n accordance with t	he test method				
			Sulphur P Sulphate Sulphate Chloride io Electrical Co Mean F (Resisitivity)	ides Present eroxide (% w/w) e content (ppm) content (% w/w) on content (ppm) n content (% w/w) pH onductivity (uS/cm) Resistivity Ω.m Density ratio (R _D) Density index (I _D)		- 31.7 0.00 93.1 0.01 9.1 70.4 - -		
	Accredi	ted for comp	liance with ISO/IEC 1702	25 - Testing.		Authorised	Signatory:	
NAT	A docume	ent are trace		neasurements included in this al standards. This document				8/09/2020
	NATA	Accredi	ted Laboratory Nu	mber: 14874	,	Brad I	Morris	Date:
	QUARIE TECH							Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795


		SOIL CH	EMICAL PR	OPER	FIES F	REPORT	
Client	Engie Electric	cal & Communication	6	Source	BH04 3.0	0-3.45m	
Address	171 Grange F Fairfield, VIC			Sample Description	Sandy sil	ty CLAY trace gravel	
Project	Mudgee 5MV	V Solar Farm		Report No.	B63732-8	SCP	
Job No	B20354			Lab No.	B63732		
Test Proce	dure:	AS1289 4.2.1	Soil Chemical Tests - Determinati	on of a sulfate content of	a natural soil and th	e sulfate content of the groundwater -	Normal Method
		AS1289 4.3.1	Soil Chemical Tests - Determinati	on of the pH value of a so	oil - Electrometric me	ethod	
		AS 1289 4.4.1	Soil Chemical Tests - Determinati	on of the electrical resisti	vity of a soil - Metho	d for sands and granular material	
		AS 1012.20	Chloride and sulphate				
		RMS T123	pH value of a soil (electrometric n	nethod)			
		RMS T185	Resistivity of sands and granular r	oad construction material	s		
		RMS T200	Chloride content of roadbase				
		RMS T1010	Quantitative determination of chlo	rides in soil			
		RMS T1011	Quantitative determination of sulp	hates in soil			
		BS1377(1990 pt.3)	Water soluble sulphate content				
		APHA 4500 H+B	рН				
		APHA 4500 SO4 2	-B Sulphate				
		APHA 4500 CI-B	Chloride				
		APHA 2510 & 2520	-B Electrical Conductivity				
		TAI B117	Sulphides Present (This service N	ot Covered by NATA Acc	creditation)		
Sampling:		1289.1.2.1 - 6.5.3 (Powe	er auger drilling)			Date Sampled:	21/08/2020
Preparatio	n: Prep	pared in accordance with	n the test method				
		Sulpha Sulpha Sulpha Chloride Chloride Electrical Mear (Resisitivi	Peroxide (% w/w) ate content (ppm) e content (% w/w) e ion content (ppm) ion content (% w/w) pH Conductivity (uS/cm) Resistivity Ω.m ty) Density ratio (R _D) ty) Density index (I _D)		- 26.6 0.00 59.9 0.01 9.4 121.0 - -		
	Accredited f	for compliance with ISO/IEC 1	7025 - Testing.		Authorised	Signatory:	
NAT	document a		r measurements included in this onal standards. This document				2/09/2020
	NATA A	ccredited Laboratory N	lumber: 14874		Brad N	Morris	Date:
							Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795


			SHRINK SWEL	L INDEX	REPO	RT			
Client	Engie Electrical & Communications			Source	BH2 1.0-1.5m				
Address	171 Grange Road Fairfield, VIC 3078			Sample Description	Silty CLAY				
Project	Mudgee 5MW Solar Farm			Report No	B63733-SS				
Job No	Job No B20354				B63733				
Test Proced	ure:	~	AS1289 7.1.1 Soil reactivity tests- Determination of	f the shrinkage index of a soil	- Shrink-swell index				
Sampling:		AS 1289.1.	2.1 - 6.5.3 (Power auger drilling)			Date Sa	mpled:	20/08/2020	
Preparation		Prepared ir	accordance with the test method						
			Swell Test: Swell o	n Saturation(E _{SW}):		0.0			
			Moisture Content Before Test (%): 14.0			14.0			
			Moisture Conte	ent After Test (%):		15.8			
			Shrink Test:						
			Shrinkage	on Drying (E _{SH} %):		0.9			
	Estimated Inert Mate			terial Present (%):		0.0			
	Extent of Crumbling D			During Shrinkage:		MINOR			
	Extent of Cracking Du			During Shrinkage:		MINOR			
			Мо	isture Content (%)		13.7			
			Shrink Swell Preparation:	Я	emoulded]			
			Shrink Swell Index:						
				lss:		0.5			
Not	es								
NAT	The r docu	results of the ter ment are traces	iance with ISO/IEC 17025 - Testing. sts, calibrations and/or measurements included in able to Australian/national standards. This docun red, except in full.		Authorised S	Signatory:		9/09/2020	
	NA	TA Accredi	ted Laboratory Number: 14874		John B	oyle		Date:	
MACQ GEO	UARIE							Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795	

			SHRINK SWE	LL INDEX	(R	EPORT				
Client	Engie Electrical & Communications			Source	BHO	BH04 1.0-1.5m				
Address	171 Grange Road Fairfield, VIC 3078			Sample Description	Silty	Silty sandy CLAY				
Project	Mudgee 5MW Solar Farm			Report No	B63	3734-SS				
Job No	Job No B20354				B63	3734				
Test Proced	ure:	~	AS1289 7.1.1 Soil reactivity tests- Determinat	tion of the shrinkage index of a so	il - Shrink	c-swell index				
Sampling:			2.1 - 6.5.3 (Power auger drilling)			Date Sa	mpled:	21/08/2020		
Preparation:		Prepared in	accordance with the test method							
			Swell Test: Swel	ll on Saturation(E _{SW}):	0.0				
		Moisture Con	tent Before Test (%):	13.9					
Moisture Content A					:	14.3				
			Shrink Test:							
			Shrinka	ige on Drying (E _{SH} %)):	1.0				
			Estimated Inert N	Material Present (%):	0.0				
			Extent of Crumbli	ng During Shrinkage	::	MINOR				
			Extent of Crackir	ng During Shrinkage	:	MINOR				
			Ν	Moisture Content (%	.)	14.0				
			Shrink Swell Preparation:		Remo	ulded				
			Shrink Swell Index:							
				lss	:	0.5				
Not	es									
	Accre	dited for compl	ance with ISO/IEC 17025 - Testing.		Aut	horised Signatory:				
NAT	The r docu	esults of the tes ment are tracea	ts, calibrations and/or measurements include ble to Australian/national standards. This do ed, except in full.					9/09/2020		
	NA	TA Accredit	ed Laboratory Number: 14874			John Boyle		Date:		
MACQ GEO								Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795		

			SHRINK SWEI	LL INDEX	REPO	ORT			
Client	Engie Electrical & Communications			Source	BH01 1.0-1.5m				
Address	171 Grange Road Fairfield, VIC 3078			Sample Description	Silty CLAY				
Project	Mudgee 5MW Solar Farm			Report No	B63735-SS	6			
Job No	Job No B20354				B63735				
Test Proced	ure:	√	AS1289 7.1.1 Soil reactivity tests- Determination	on of the shrinkage index of a soil	- Shrink-swell index	(
Sampling:			2.1 - 6.5.3 (Power auger drilling)			Date Sa	mpled:	20/08/2020	
Preparation		Prepared in	accordance with the test method						
			Swell Test:	on Saturation(E _{sw})		0.0			
			Jwei	UN Saturation(L _{SW})		0.0			
Moisture Co				ent Before Test (%)	:	11.9			
Moisture Content After					:	14.3			
			Shrink Test:						
			Shrinkag	ge on Drying (E _{SH} %)	:	0.5			
	Estimated Inert Mate			1aterial Present (%)	:	0.0			
	Extent of Crumbling D			ng During Shrinkage	:	NONE			
	Extent of Cracking E			g During Shrinkage	:	NONE			
			M	loisture Content (%))	11.5			
			Shrink Swell Preparation:	F	Remoulded]			
			Shrink Swell Index:						
				lss:		0.3			
Not	es								
	Accre	edited for compl	iance with ISO/IEC 17025 - Testing.		Authorised	Signatory:			
NAT	The results of the tests, calibrations and/or measurements included in thi document are traceable to Australian/national standards. This documen shall not be reproduced, except in full.							9/09/2020	
	NA	TA Accredit	ed Laboratory Number: 14874		John	Boyle		Date:	
MACQ GEO	UARIE [ECH							Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795	

